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Executive Summary 

 The Office of Management and Budget’s Circular A-11 directed federal agencies—

including transportation agencies—to consider climate preparedness and resilience as part of 

their FY 2017 construction and maintenance budget requests. The effects of a changing climate 

on transportation corridor slopes are poorly understood, but several recent studies (e.g., Hicks, 

1995; Occhiena and Pirrulli, 2012) suggest that landslide activity, especially rockfall, is likely to 

increase as a consequence of the increased occurrence of intense precipitation events. Changing 

climate is associated with an increased variability in temperature swings and precipitation. A 

Federal Highway Administration (FHWA, 2016) review cited research indicating “extreme 

temperature fluctuations and freeze-thaw cycles can weaken [geologic materials] and increase 

susceptibility to slope failures.”   

 In order to understand slope rockfall activity and its linkages to weather and climate, we 

acquired additional high-resolution lidar surveys of rock slopes in Alaska.  This Pacific 

Northwest Transportation Consortium (PacTrans)-supported research successively developed a 

rich data set to quantitatively evaluate rockfall activity (the magnitude-frequency of rockfall 

events), which proved useful for examining correlations with historic weather patterns and future 

climate forecasts.  As part of this research, we further developed the Rockfall Activity Index 

(RAI) and began to evaluate how the RAI can be linked to increasing temperatures swings and 

freeze-thaw cycles. We also developed a new approach to model slope changes with time that 

calculates evolving erosion patterns on the cliff years into the future. The model also shows how 

the RAI and other morphological patterns change across the slope with time as material is 

unleashed from the cliff.  The model has the ability to change the rockfall rates over time on the 

basis of environmental factors.   
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 This quantitative approach for rockfall activity forecasting is an important step in 

providing tools to state departments of transportation to assess transportation corridor risks, 

sustainability, and resiliency, especially for Alaska in the face of a changing climate.  This 

research is a first step in providing the analysis tools needed to meet a recent presidential 

directive and help improve our fundamental understanding of the potential impacts of climate 

change on the safety of and mobility within transportation networks in landslide-prone regions 

such as the Pacific Northwest in the U.S. 

 

 

 



1 

Chapter 1 Climate Change and Transportation Resiliency 

Interest in transportation infrastructure in the Arctic region is growing because of increased 

maintenance costs that can be linked to climate change.  Alaska is seeing increased ground 

subsidence and slope instability at twice the rate of the mid-latitudes (National Climate 

Assessment, 2016).  Because much of Alaska’s transportation infrastructure is developed on 

permafrost, the region’s deeper thaws and other extreme weather events are likely to incur 

significant costs for mitigation and repair.   

As an example, the impacts of landslides, thaw-induced subsidence, and rockfalls on 

infrastructure have cost $11 million/year for Alaska (Connor and Harper, 2013), $10 million for 

Oregon (Burns and Madin, 2009), and $15 million/year for Washington (Washington DNR, 

2016), sometimes resulting in hundreds of millions of dollars of losses during extreme events 

(e.g., the Oso, Washington, landslide of 2014). 

The U.S. National Climate Assessment indicates that risks to Alaska infrastructure could 

be substantially greater (Larson et al., 2008), with costs reaching $5.6 to $7.6 billion by 2080 for 

all forms of transportation infrastructure (figure 1.1).  

A recent report from the National Academies of Science (2016) conclusively 

demonstrated that climate change has led to an increase in the frequency and intensity of daily 

temperature extremes and has contributed to a widespread intensification of daily precipitation 

extremes (Scott, 2016).  Precipitation extremes and longer-term climate change trends are 

forcing departments of transportation (DOTs) to anticipate asset management issues by assessing 

vulnerability and risk to assets.  This includes identifying vulnerable facilities and systems, 

changing maintenance practices, and “right-sizing” infrastructure retrofits such as bridges and 

culverts for future operational conditions.   
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Figure 1.1 Thawing Alaska, from US National Climate Assessment:  Estimating future costs for 

Alaska public infrastructure at risk from climate change. Page 132. (Larsen et al., 2008).   

 

These aspects of transportation planning are collectively known as “resilience and 

adaptation” and are now part of the DOT vocabulary.  Adaptation is not necessarily new, as there 

have always been challenges of unstable soils, rockfall, flooding, and extreme heat.  What are 

new are the increased frequency and intensity of these events and their increasing economic 

impacts.  Adequate planning and response are needed to ensure the resilience of communities 

that are dependent on critical transportation networks.  The impending challenge for state 

transportation agencies is not in the distant future, and the Federal Highway Administration 

(FHWA) is urging state agencies to implement climate change adaptation programs to assess 

vulnerability and the risk of geohazards on infrastructure (FHWA, 2016).  

The geography, demographics, and development history of Alaska have led to limited 

transportation corridors without any network redundancy.  This means that the state’s 

transportation network is vulnerable to disruption. The state also has limited capacity to adapt to 

events such as rock falls, landslides, and damage to culverts and bridges from storm events. 

Since 2012, we have been acquiring high-resolution lidar surveys of close to 20 rock-

slopes in Alaska in support of Pactrans-supported studies of roadway safety and geotechnical 
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asset management. The setting for this research is fortuitous, since Alaska is regarded a climate 

change field laboratory by experts who have found that the region is already experiencing the 

early effects of a rapidly changing climate (Larsen et al., 2008). In this project, we capitalized on 

this treasure trove of unique, high-resolution data to quantify how rockfall activity (i.e., the 

magnitude-frequency of rockfall events) varied with changes in annual storm intensity and other 

meteorological and climatic indices from 2012 to 2016. We also utilized this information with a 

landslide activity magnitude-frequency forecasting procedure (Barlow et al., 2012) to investigate 

how the safety and resiliency of transportation corridors may change over their design lives as a 

result of climate alteration. 

This research is a first step in providing the analysis tools needed to meet a presidential 

directive and also to help improve our fundamental understanding of the potential impacts of 

climate change on the safety of transportation networks in landslide-prone regions. It directly 

aligns with the 2016 PacTrans theme of "Safe Infrastructure: High tech solutions to lifeline 

resilience." Specifically, it addresses PacTrans' research priority of using new data-driven 

technologies to improve the safety and resilience of transportation systems in the Northwest 

United States. Landslides pose a well-recognized threat to the safety of motorists throughout 

much of the mountainous terrain of the Pacific Northwest (e.g., Badger and Lowell, 1992). This 

research also addresses a critical research need that was identified this year by the FHWA 

(2016): to understand better the "link between rockfalls, weather events, and climate change." 
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Chapter 2 Assessing Rockfall in the Face of Climate Change 

Assessing rockfall and landslide risk poses challenges when DOT’s decide where to 

allocate funds, especially from a system-wide asset management perspective with limited DOT 

budgets.  Slope assessment has traditionally been laborious and costly. Current best practices for 

management do not necessarily facilitate proactive methods for slope data collection, analysis, 

and management to identify and remediate hazardous conditions before a failure occurs.  

Another factor limiting slope assessment has been inadequate data and observation 

systems. This is especially true for Alaska, primarily because of its vast and austere environment.  

Without baseline data and monitoring systems, analysis of the changing factors that affect 

transportation infrastructure is unfeasible.  To overcome this limited understanding, PacTrans 

and its cost-share partners agreed to begin a baseline laser-scan survey at two critical locations in 

Alaska deemed most likely to face rockfall and landslide events.  In 2012, a first round of field 

surveying collected slope morphology and geology data at two field sites in Alaska, known as 

Long Lake and Glitter Gulch.  Laser scans using light detection and ranging (lidar) equipment 

were the first step in evaluating the magnitude and frequency of rockfall activity.  This first set of 

scans was completed using mobile laser scanning technology. 

2.1 Rockfall Activity Index  

Subsequent scans using terrestrial laser scan technology in 2013 (Phase II), 2014 (Phase 

II), 2015 (Phase III), and 2017 (this project phase) have now created a rich data set that can be 

used to develop a more precise and quantifiable geohazard risk assessment.  To quantify rockfall 

activity and assess landslide risk, the PacTrans research team developed the Rockfall Activity 

Index (RAI) (Dunham et al., 2017).  The RAI is a point cloud-derived, high-resolution, 

morphology-based method for assessing rockfall hazards. The RAI is applied in a two-step 



6 

procedure. In the first step, morphological indices (local slope and roughness derived from a 

high-resolution, three-dimensional point cloud) are used as an indicator to classify erosion and 

mass wasting processes acting on rock slopes. In the second step, the slope morphology 

classifications are used with estimated instability rates to map rockfall activity across a slope 

face. The RAI method has been implemented as a simple and computationally efficient 

algorithm, which makes it repeatable and easy to apply across rock slopes of virtually any size.  

The method provides an estimate of rockfall kinetic energy release (this is the numerical 

Rockfall Activity Index, RAI) along 1-m rock slope segments, as well as detailed mapping of 

rock slope morphology and kinetic energy release areas. The RAI does not consider large, 

structurally controlled failures such as rock slides or topples, which are typically assessed with 

limit equilibrium analysis procedures. The RAI is expressed as annual cumulative delivery of 

rockfall kinetic energy (kJ) at the base of a unit length (1-m) slope. Although this quantitative 

formulation suggests a high degree of engineering precision, it should be recognized that 

variability and uncertainty exist in the parameters used to compute the RAI. Thus the term 

"index" was selected to emphasize the method's intended use as a measure of rockfall activity, 

rather than an exact predictor of annual energy release from rock slope. 

2.2 Rockfall Activity Index in the Face of Climate Change  

To further the development of the RAI, this round of the PacTrans research had the 

following objectives:   

 Acquire an additional dataset from a 2017 campaign for further analysis and to create a 

longer time series data set for climate change trend analysis. 

 Compare data from the digital surface models to corroborate rockfall trends. 

 Compare rockfall trends with historic weather to validate climatic forecast trends.  
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We then examined correlations between the quantifiable Rockfall Activity trends with the 

historic weather patterns of the study sites.  Forecasted climatic trends for the rest of the 21st 

century were also examined. 
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Chapter 3 Review of Phases I to III of the PacTrans Research 

PacTrans is an organization that sponsors university transportation research in the Pacific 

Northwest.  Located at the University of Washington, its partner institutions include universities 

in Alaska, Oregon, and Idaho. Phases I to IV (the current phase) of this research were led by the 

University of Alaska Fairbanks, with co-investigators from Oregon State University and the 

University of Washington. Note that each phase was a separate project with unique research 

goals, but each effectively built upon the results of the previous phases and leveraged previously 

collected data to maximize the return on investment.  This section highlights key research 

findings and products from the previous phases that laid the groundwork for this current phase. 

During the first phase, two critical transportation corridors in Alaska (figure 3.1) were 

selected for the research; they are colloquially known as Glitter Gulch and Long Lake.  The 

Long Lake corridor is approximately half way between Anchorage and Glennallen on the Glenn 

Highway (mileposts 78 to 89).  Glitter Gulch is located on the Parks Highway (mileposts 239 

and 247), about halfway between Anchorage and Fairbanks.  Glitter Gulch is immediately north 

of the tourist village at the entrance to the Denali Park, hence the kitschy name.   

 

Figure 3.1 Locations of rockfall study sites in Alaska 
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3.1 Phase I Research Results 

Phase I research had the objective of evaluating the capabilities of lidar data to assess 

slope hazards and risk in a geotechnical asset management framework and developing tools to 

use them.  The research was conducted from fall 2012 to fall 2013.  Using both mobile and static 

terrestrial lidar, it created a baseline of laser scanning measurements for 10 miles of highway at 

the Long Lake and Glitter Gulch sites with problematic slopes.  Data from the laser scans were 

used to create detailed morphological models of the slopes, as well as a colorized lidar point 

cloud from cameras attached to the lidar scanners.  The models helped to visualize a variety of 

geologic features, including rock types, fracturing, weathering, and talus accumulations.  The 

slope morphology was of particular interest in the digital surface models (DSM), especially the 

rock cantilever overhangs that indicate slope surfaces with greater probabilities of slope 

instability.  The mobile lidar data at Glitter Gulch were showcased on the November-December 

2014 cover of TR News (figure 3.2).  

 

 

Figure 3.2 Lidar point cloud of the Glitter Gulch study site on the cover of TR News 

(Link at:  http://onlinepubs.trb.org/onlinepubs/trnews/trnews295.pdf) 

http://onlinepubs.trb.org/onlinepubs/trnews/trnews295.pdf
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Three limitations to the mobile lidar scanning techniques were revealed, primarily 

involving insufficient scan detail (resolution) from the currently available technology when the 

lidar is traveling at highway speeds, vegetation interfering with scan data, and the blocking 

(occlusion) of laser scans by shadows cast by barriers, guard rails, and vegetation. However, the 

benefits identified included efficient coverage across large sections of highway, safe data 

collection, and the ability of the data to be utilized for multiple purposes in addition to slope 

assessment were identified.  

The final report for the Phase I of the project (Metzger et al., 2012) is available at: 

http://depts.washington.edu/pactrans/wp-content/uploads/2012/12/PacTrans-2-739439-Metzger-

Andrew-Multi-Project.pdf 

3.2 Phase II Research Results 

A scientific shortcoming determined in Phase I was that existing rockfall hazard 

assessment models were inadequate for the detailed lidar digital elevation model (DEM) data 

because they were too coarse.  Both the Rockfall Hazard Rating System (RHRS) (Pierson, 1991 

and Huang et al., 2009) and the Rockslope Deterioration Assessment (RDA) (Nicolson, 2004) 

are subjective, resulting in qualitative descriptions and risk assessments. A quantitative risk 

model exists called the Probabilistic Risk Assessment (PRA) (Bedford and Cooke, 2001), but it 

is also limited to subjective interpretation of slope instabilities. Without quantitative risk 

assessments, these models cannot produce analytic results using lidar DSM data sets as 

forecasting inputs. 

The Phase I research also indicated that research into slope stability risk analysis could 

benefit from additional lidar scan data from another timeframe at a similar resolution, in order to 

perform slope change analysis. (The mobile laser scan data were difficult to compare with the 

http://depts.washington.edu/pactrans/wp-content/uploads/2012/12/PacTrans-2-739439-Metzger-Andrew-Multi-Project.pdf
http://depts.washington.edu/pactrans/wp-content/uploads/2012/12/PacTrans-2-739439-Metzger-Andrew-Multi-Project.pdf
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static scan data, given the differences in resolution.) The field survey during this phase focused 

on a narrower set of specific sites rather than attempting to capture data for the long sections of 

highway, as done in the first phase.   

Change detection can identify specific locations of individual rockfall activity, talus 

accumulation, minute volumetric changes of the slope, overall volumetric change, and overall 

trends in morphology.  Examples are provided in figures 3.3 and 3.4.  This temporal analysis 

could then be further developed with more data to examine more complex phenomena, such as 

geologic fracturing, insolation on south facing slopes, freeze-thaw cycles, soil ratcheting, and the 

mitigation effects resulting from regular DOT slope maintenance. Measurement of rockslope 

change was the first step in developing a rockslope stability model capable of quantitative 

forecasts.  

 

 

Figure 3.3 DEM change detection – red rock loss and blue rock accretion 
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Figure 3.4 Close-up of eroded material at the talus (red < -0.25m) at Glitter Gulch 

 

Cantilever overhangs and other complex features created scanning occlusions in the 

DEM, thus helping to focus the team’s investigation on scientific solutions to scanning 

occlusions. Important research into how to help interpolate across the occluded scan data led to 

the publication of the paper titled, “To Fill or Not to Fill:  Sensitivity Analysis of the Influence of 

Resolution and Hole Filling on Point Cloud Surface Modeling and Individual Rockfall Event 

Detection.” (Olsen et al., 2015). This paper also presented an automated approach to detecting 

individual rockfall clusters to automate the development of magnitude frequency curves.   

The ability to measure changes in slope surfaces and quantify them with precise detail led 

the team to an enhanced analysis of slope stability and the impacts of rock structure and 

weathering.  By tracking morphology, it is also possible to quantify slope roughness across 

multiple scales.  Changes in morphology and roughness can be precisely calculated to infer 

changes in slope volumetrics and the kinetic energy released with the slope change.  These 
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components became part of the Rockfall Activity Index (RAI) developed to model slope 

dynamics.  

The scientific methods and RAI were published in scholarly articles and in the PacTrans 

Phase II report. These links are at:   

 The PacTrans Phase II Report (Cunningham et al., 2013):  

http://depts.washington.edu/pactrans/wp-content/uploads/2013/11/PacTrans_42-

UAF-Cunningham.pdf 

 Rockfall Activity Index in Engineering Geology (Dunham et al., 2017):  

http://www.sciencedirect.com/science/article/pii/S0013795216305671 

3.3 Phase III Research Results 

PacTrans sponsored the team’s Phase III research with a new project to evaluate the 

quality of additional photogrammetric data collected via a drone (unmanned aircraft system or 

UAS) in addition to a third set of repeat terrestrial laser scans. The additional data also helped the 

team develop a quantifiable rockfall and slope stability model utilizing change detection 

techniques to forecast future slope behavior.  This research effort also provided an opportunity to 

further test and refine the RAI system to support the point clouds acquired from drones.   

Two important outcomes resulted from this phase.  First was a detailed examination of 

the photogrammetry data captured by an off-the-shelf drone, which indicated that the resulting 

photogrammetry surface models were comparable to the lidar scans in many ways and of 

reasonable accuracy for slope morphology assessment, provided that adequate survey control 

was provided.   

The photogrammetry process, called structure-from-motion (SfM), uses the motion 

parallax of the drone’s changing position to generate detailed three-dimensional models of the 

http://depts.washington.edu/pactrans/wp-content/uploads/2013/11/PacTrans_42-UAF-Cunningham.pdf
http://depts.washington.edu/pactrans/wp-content/uploads/2013/11/PacTrans_42-UAF-Cunningham.pdf
http://www.sciencedirect.com/science/article/pii/S0013795216305671
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slope surfaces.  While the SfM technique is not necessarily new, its application to terrain 

modeling is new, especially with the perspective that an airborne platform can achieve over-

terrestrial imaging.  The drone demonstrated that its “aloft” perspective generates DSM data of 

critical cantilever overhangs.  Additionally, the point cloud density of the SfM model is 

comparable to that of the lidar scanner but was also found to be more consistent.  Finally, unlike 

the lidar, which could only be operated from a narrow road shoulder, the drone proved able to 

quickly fly above the road and in an offset position from the target, making it safer to operate 

while collecting high quality data in a shorter amount of time (accounting for time required for 

survey control).  

Rigorous comparison of the drone SfM data to terrestrial laser scan (TLS) data required 

rigorous survey control.  Geodetic Global Navigation Satellite System (GNSS) receivers and 

total stations with targets serving as ground control points (GCP) placed on the slope were 

therefore necessary for both the drone photogrammetry and the lidar scanning.   

The last step in the photogrammetry research was to fuse the drone DEM with the lidar 

DEM.  The results were effective, with the drone data filling occlusions in the lidar data, and the 

lidar data helping to “control” the draping of the drone DSM point cloud.  Thus a denser and 

more complete DEM was generated for the Phase III data collection without the problematic 

occlusions from the rock cantilever overhangs. 

Project results were highlighted as a success story in the Pactrans Newsletter (figure 3.5).  

The project report for this phase will be forthcoming on the Pactrans website. 
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Figure 3.5 PacTrans Success Story.  

(Link at:  http://depts.washington.edu/pactrans/wp-content/uploads/2016/03/PacTrans-Fall-2015-

Edition-14-Newsletter-Final.pdf) 

  

http://depts.washington.edu/pactrans/wp-content/uploads/2016/03/PacTrans-Fall-2015-Edition-14-Newsletter-Final.pdf
http://depts.washington.edu/pactrans/wp-content/uploads/2016/03/PacTrans-Fall-2015-Edition-14-Newsletter-Final.pdf
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Chapter 4 Current Phase (IV) Research Results 

This Phase IV project had several primary goals.  First was the collection of another 

round of rockslope data at the Glitter Gulch and Long Lake sites.  A second goal was to conclude 

an in-depth analysis of the accuracy of the digital surface model (DSM) with terrestrial laser scan 

(TLS) data and structure-from-motion (SfM) data with survey control (expanding on Phase III).  

Third, the time series data were evaluated for changes in magnitude frequency curves. Fourth, an 

RAI forecasting model was developed to show the evolution of the slopes with time.  Fifth and 

last, the DSM data from the scans were analyzed to determine whether historic weather trends 

could be correlated to slope retreat and then to examine how future climatic forecasts for the 

region might indicate a continuation of the observed patterns. 

4.1 Step 1:  Data Collection 

 The survey campaign was conducted in late summer of 2017.  This included both a drone 

SfM (figure 4.1) and TLS (figure 4.2), with rigorous survey controls utilizing total station (Leica 

TS15, figure 4.3), GNSS (Leica GS14, figure 4.4), and survey targets for ground control points 

(GCP).  New TLS equipment (Leica P40) was used for data collection, improving the data 

quality as well as providing denser, three-dimensional point clouds in a similar amount of time.  

In particular, the system had less noisy data from mixed pixels, resulting in the capture of 

clearer, sharper edges on the rock than the previous surveys. The same drone and camera 

combination was used as in the Phase III data collection, thus providing three-dimensional SfM 

models that were similar to those from before. Figures 4.5 and 4.6 provide example results of the 

TLS data and subsequent processing to determine the RAI.   
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Figure 4.1 Example drone operation with the flight controller (right) and the image acquisition 

software (left) 

 

 

Figure 4.2 Example terrestrial laser scan set-up with the Leica P40 at a Glitter Gulch site. 
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Figure 4.3 Example operation of the total station at a Glitter Gulch site to acquire reflectorless 

measurements on the cliff face.   
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Figure 4.4 Example GNSS survey observation on a ground control point used to provide geo-

referencing information for the total station. 
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(a) 

 

(b) 
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(c) 

Figure 4.5 (a) Overview of RGB colored terrestrial laser scans for Site LL85.5 with detailed 

close-ups (b and c). 
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(a) Slope 

 

(b) Roughness (35cm) 
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(c) Roughness (85 cm) 

 

(d) Kinetic energy (kJ) 
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(e) RAI classification 

 

Figure 4.6 Example calculations for Site LL85.5, including (a) Slope, (b) Roughness 35 cm, (c) 

roughness 85 cm, (d) Kinetic energy potential, and (e) Rockfall Activity Index 

 

4.2 Step 2:  Lidar SfM Comparison 

 The accuracy assessment comparing the TLS with the SfM data was rigorously 

conducted at three rock slopes at the Long Lake study site with variable morphologies and 

geometries.  These are indicated by markers labeled RS1 (RockSlope 1), RS2, and RS3 in figure 

4.7.  While preliminary evaluations were conducted in Phase III, this phase enabled us to 

complete a much more in-depth analysis of the capabilities and limitations of the UAS-based 

SfM.   
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Figure 4.7 Study plan with three rockslopes selected:  RS1, RS2, and RS3. 

 

Figure 4.8 shows the colorized digital surface model (DSM) for each rock slope (RS1, 

RS2, and RS3), with black and white pattern targets used as ground control points (GCPs).  The 

GCPs were used to survey the DSM with a total station linked to the geodetic network via GNSS 

receiver. The GCPs were also used to register the SfM data on top of the TLS data. 

Further details and findings of this comparison are available in the manuscript (O’Banion 

et al., in press) provided in Appendix A, which was a product of this research project. Key 

findings included the following:  

(1) UAS SfM models require significant survey control to provide results of significant 

accuracy for slope morphology assessment.  

(2) The inclusion of ground-based photographs to supplement the UAS photographs 

significantly helps improve the models.  
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(3) SfM models offer some benefits in more consistent resolution and improved coverage 

across the slope. 

(4) A challenge with UAS using SfM models for tall rock slopes is the difficulty of 

placing survey control on the upper section of the slope, leading to error propagation.  

For the SfM data collected in this phase, we remediated these effects by using a total 

station to sight indistinct features on the cliff and obtain reflectorless measurements to 

improve the model quality.  (Note this approach had not yet been implemented for the 

comparison discussed in Appendix A.)   

 

 

Figure 4.8 SfM-derived 5-cm surface models of the three rock slopes (RS1, RS2, and RS3) with 

the layout of black and white targets used as ground control points 
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4.3 Step 3:  Development of Magnitude Frequency Curves 

 Change detection-derived magnitude–frequency relationships were developed for the 

Long Lake and Glitter Gulch rock slope study sites. These study sites provided an ideal test-bed 

setting for developing magnitude–frequency relationships because of their high rates of rockfall 

activity. Over 20 individual sites were evaluated in the study; however, for brevity, magnitude–

frequency relationships are presented for four of the Long Lake sites (corresponding to 

approximate milepost locations 71, 88.5, 86.9, and 87). Figures 4.9 to 4.12 present cumulative 

magnitude–frequency relationships for three approximately one-year epochs (2012-2013, 2013-

2014, and 2014-2015). The relationships included slight characteristic “rollover” for small 

volumes, as well as linearity in log-log space across several orders of magnitude of volume. The 

rollover phenomenon in landslide magnitude–frequency relationships was attributed to data 

censuring that occurred when survey resolutions were approached. The deviation from log-log 

linearity for large volumes has been noted by others and was attributed to the temporal censuring 

that occurred over relatively short monitoring time periods. The results were relatively consistent 

over the three year (2012-2015) monitoring period. Moreover, there was a general consistency 

across all the sites over this period, suggesting regular rates of rockfall activity at the Long Lake 

road cuts. 
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Figure 4.9 Cumulative magnitude–frequency relationships for three approximately 1-year 

epochs at site LL85.5 

 

 

Figure 4.10 Cumulative magnitude–frequency relationships for three approximately 1-year 

epochs at site LL86.9 
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Figure 4.11 Cumulative magnitude–frequency relationships for three approximately 1-year 

epochs at site LL87 

 

Figure 4.12 Cumulative magnitude–frequency relationships for three approximately 1-year 

epochs at LL71 

 

4.4 Step 4:  Development of a Rockfall Evolution Model 

 To capture the temporal influence of changing rockslope geometry and various forcing 

events—climactic, seismic or anthropogenic—a prototypical framework that captures the 

evolution of rockslopes over time was developed using the same logic as the RAI. This 
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algorithm, entitled the Rockslope Evolution Framework (REF), incorporates RAI classifications 

(steep overhangs, talus, etc.) for a given digital terrain model (DTM) discretized as a psuedogrid, 

assigning a prescribed activity rate (A) and retreat rate (R) to each cell on the basis of its 

classification at a given time increment t. At time t, each given cell is assigned a random number 

between 0 and 1 that is representative of the Activity Variable (At). When the Activity Variable 

falls below a prescribed activity rate for a given cell i at a time increment t (i.e., A(t) > At(t)), 

then the cell will retreat by a distance R(t) normal to the given cell surface. Then, the DTM is 

reconstructed and its derivatives required for classification (roughness at 35-cm window, R35; 

roughness at 85-cm window, R85; slope based on surface normal, S) are computed. This new 

DTM is then used in the next time increment, whereupon all cell classifications are updated on 

the basis of the new geometry. Concurrent to this, activity rates (A) are updated to account for 

any type of forcing effects at a given time t—in this preliminary framework, the changes in 

activity due to increased freeze/thaw cycling. However, the proposed framework maintains the 

flexibility to incorporate any time-dependent changes in activity that may be derived empirically, 

including freeze/thaw, precipitation, anthropogenic changes (e.g., blasting, scaling), or seismic 

forcing. A schematic of the proposed algorithm is presented in figure 4.13. 

   

 

 



32 

  

Figure 4.13 Proposed algorithm for implementing the RAI to determine rockfall activity, 

considering changes in rockslope geometry and activity rates. 
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  The REF was tested on the highly active and well-characterized rockslope located at 

milepost 88.1 near Long Lake over a 100-year period. For this analysis, the analyzed timestep 

was 1 year (consistent with the intervals for data collection used to develop the RAI). Every year, 

the activity rates (A) for the seven classifications (Dw, Dc, Df, I, Oc, Os and T) were assumed to 

increase at a rate 0.3 percent per year, consistent with increases in average temperatures 

projected by the Scenarios Network for Alaska + Arctic Planning  (SNAP) from 2000 to 2099. 

The results of the analysis are shown in figure 4.14. It can be seen that the RAI values increase 

over time along the rockslope profile. The yearly mean RAI showed an increase that is not linear, 

yet rather exponential, more than doubling over the century-long projections. This implies that 

the rockfall activity not only increases, but its potential for harm (i.e., clearance between the 

point of failure on the slope and the roadway) also increases over time. Using changes in climate 

as an analogue for increased activity, the given increase in A over the 100 years is approximately 

35 percent. However, the increase in the mean RAI for the Long Lake site is almost 150 percent, 

indicating that, hypothetically, small changes in climate may result in much larger changes in 

rockfall activity and impacts.  
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Figure 4.14 Top: Projected evolution of the RAI profile for Long Lake MP 88.1 site over a 100-

year period, considering increasing climate influences on established activity rates (blue is 

current time, red is 100 years from now).  

Bottom: Mean projected RAI profile for Long Lake MP 88.1 over a 100-year period. Note that 

the increasing rockfall activity is not linear.  

  

 The 100-year projections from the REF exhibit significant retreat at areas with already 

high activity and retreat rates (i.e., steep and cantilevered overhangs, figure 4.15 and figure 

4.16). Intuitively, these are reasonable findings, as these regions tend to be very exposed and 

prone to instability due to gravity.  Although the given analysis provided profiles after 100 years 

of rockfall activity (figure 4.16), it is evident that much longer times may result in an eventual 

transition back to an equilibrated, stable slope. However, within the timespan of engineering 

structures, the studied rockslopes will remain in an active, unstable state driven by geological 

structure, slope geometry, and exposure to climactic influences.  
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Figure 4.15 Top: Original psuedogrid of RGB 5cm x 5cm cells representative of Long Lake 

rockslope geometry at the time of data collection.  

Bottom: Projected retreat of rockslope after 100 years (red is greater than 2 meters of retreat, 

blue is no retreat). 
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Figure 4.16 Select initial and projected final rockslope profiles along Long Lake site after 100 

years of time. Note the rapid retreat of steeper and overhanging sections of weak rock, while a 

more steady retreat pattern is noted for the more gentle grades. 

 

The proposed REF model uses the RAI methodology to project rockslope changes on the 

basis of empirically derived activity and retreat rates derived from serial collection of lidar data. 

This quantification provides a meaningful approach for providing a more resilient infrastructure 

network. However, the RAI alone does not account for one of the growing threats toward 

resilience: climate change. Being able to capture the influence of climactic drivers on rockslope 
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instability quantitatively will enable planners and engineers to prioritize rockfall mitigation 

measures on the basis of collected empirical data and projected influences. This wil ensure 

greater resilience today and in the future.  

 Future modifications will focus on the influence of how these temperatures change 

freeze/thaw cycling and corresponding activity rates, as the number of freezing and thawing 

cycles may be used as a proxy for increases in activity for a given year based on climate 

projections.  This work may also account for other climate-forcing influences, including solar 

radiation (aspect), precipitation, and snow. 

4.5 Step 5:  Comparison of Slope Change with Historic Weather Patterns  

 To analyze the historic weather and forecasted climate of the study sites, we first 

downloaded the historic weather data archived with the National Oceanic and Atmospheric 

Administration (NOAA).  These data for central Alaska dated from 1927, offering 90 years of 

records to examine.  Annual trends resembled weather in many places—a whipsaw of ranges. 

Nevertheless, the overall trend could be determined.  Since 1927, the trend of summer 

temperatures, as indicated in figure 4.17, has been one of continuous warming.  

 



38 

 

Figure 4.17 Summer temperature warming trend for central Alaska since 1927 

 
Note the horizontal gray line, which is the mean temperature for the entire period of 

weather observations.  The blue line indicates the trend of summer temperatures for July, which 

depicts a steady increase.  During this period, temperatures climbed from an average summer 

temperature of 55°F to an average of 58°F.  The historic data also show that yearly swings in 

temperature variability skewed with the warming trend.   

The same data can be viewed on a differing plot, figure 4.18. In this case, we combined 

the average summer temperatures for central Alaska, not just for July as in the previous plot, but 

also for the months of June, July, and August. The warming trend remained the same. 
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Figure 4.18 Summer temperature warming trend for central Alaska since 1927 

 

There are two additional ways of looking at the temperature trends for central Alaska.  

The previous two charts provided the average temperatures.  When we considered the minimum 

(figure 4.19) and maximum (figure 4.20) temperatures from June through August, the patterns 

again remained similar, though the average maximum temperature shifted earlier in the chart. 
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Figure 4.19 Temperature warming trend for central Alaska since 1927 (minimums) 

 

 

Figure 4.20 Temperature warming trend for central Alaska since 1927 (maximums) 
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Finally, looking at the historic average temperatures in what is typically the coldest 

month for central Alaska, February (figure 4.21), the same trend emerged, with a warming trend 

of about 6°F from 1927 to the present.   

 

Figure 4.21 Winter temperature warming trend for central Alaska since 1927 

 

The reader is invited to further study these trends at this NOAA link: 

https://www.ncdc.noaa.gov/cag/time-series/us/50/3 

 

 

  

https://www.ncdc.noaa.gov/cag/time-series/us/50/3
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Chapter 5 Alaska Forecast Models 

5.1 Weather Patterns and Climate Forecasts 

Climatologists generally refer to weather as the temperature, humidity, and precipitation 

of a place, typically on a short time scale, such as hour to hour, day to day, and week to week.  

Climate on the other hand is the weather of a place averaged over a longer time, such as year to 

year, or over decades.  Thus the historic weather data we reviewed provided insight into the 

changing climate pattern for our study sites. 

Climate researchers have noted that Alaska has warmed twice as rapidly as the rest of the 

U.S.  This warming effect is greater in the winter by an average of 6°F, whereas the summers are 

warmer by 3°F (Chapter 4).  Weather variability, with more extremely hot days and fewer 

extremely cold days, is now the normal pattern affecting transportation corridors in Alaska.  The 

spring snowmelt arrives earlier, glaciers are retreating, and permafrost is thawing longer and 

deeper during the summers.   

A significant warming shift occurred around 1977, when the Pacific Decadal Oscillation 

(PDO) was observed.  The PDO has been shown to alternate over time between cool and warm 

phases, although the cooler oscillation has been moderated by the long-term warming trend.  The 

PDO is explained by the coupling of warming atmosphere and waters in the eastern Pacific 

Ocean and is related to El Niño events, among other factors.  The oscillations from the PDO 

pattern can be seen in the previous charts. 

The long-term climate patterns in Alaska continue to show a warming trend.  Forecast 

models include variables that are mechanisms that “force” certain patterns.  These “forcings” 

include greenhouse gases, with the greatest influence being carbon dioxide because of its 

prevalence and link to fossil fuels. 
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5.2 Climate Forecast Models 

The forecast models used to predict monthly average temperatures at our study sites were 

developed at the University of Alaska Fairbanks by the Scenarios Network for Alaska + Arctic 

Planning (SNAP).  These SNAP models were used to factor a variety of forcings into local, 

down-scaled forecasts for the specific sites of Long Lake (Chickaloon projection) and Glitter 

Gulch (Denali Park projection).   

The forecast models borrow from models developed by global experts that have been 

tested for factors associated with Alaska’s historic weather patterns.  The various models and the 

scenarios under which they are evaluated lead to differing projections.  In the case of the 

forecasts at our study sites, the greatest variable chosen was that carbon emissions would 

continue to be released at their current rate. 

This current rate of emission is called the “high-range emission,” which in effect means 

that carbon dioxide trends will result in solar energy warming of the Earth’s surface at +8.5 watts 

per square meter.  The term RCP 8.5 means representative carbon pathway, which is another 

forecasting tool specific to several greenhouse gases, not exclusively carbon dioxide forcing. 

With the RCP 8.5 assumption, the model showed that average annual temperatures in 

Alaska are projected to climb steadily for the balance of the 21st century. By 2050 temperatures 

are expected to grow by an additional 2°F to 4°F above the historic increase from 1927 to 2017.  

By the end of this century, temperatures in the interior of Alaska are expected to rise 8°F to 

10°F. 

5.3 Climate Forecasts for Study Sites 

The next series of plots are from the SNAP models.  The first two charts are temperature 

projections and variabilities at Chickaloon (Long Lake, figure 5.1 and Denali Park (Glitter 
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Gulch, figure 5.2). Note that the historic data are in the first two bars (gray and light orange), 

whereas the longer-range forecasts are displayed the darker orange colors.  Superimposed on 

each bar is the variability of the projection (from the normal statistical distribution), which 

provides an estimate of how the daily temperatures (weather) may vary within the overall 

climatic pattern. 

 

 

Figure 5.1 Temperature forecast at Long Lake through 2099 

 

 



46 

 

Figure 5.2 Temperature forecast at Glitter Gulch through 2099 

 

The same forecasting models were also used to estimate the precipitation at each study 

site.  The following two charts (figures 5.3 and 5.4) for the study sites show increasing 

precipitation and a profoundly varying range of precipitation events, which are correlated to 

climate change, in general. 
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Figure 5.3 Precipitation forecast at Long Lake through 2099 

 

Figure 5.4 Temperature forecast at Glitter Gulch through 2099 
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Chapter 6 Conclusions and Recommendations 

This Phase IV research project attempted to understand the quantitative slope changes the 

team has measured since 2012 at Long Lake and Glitter Gulch, Alaska, with historic weather 

data and forecasted climate trends. A quantitative framework called the RAI provided a reliable 

way to assess rockfall activity and the impacts of these geohazards using a serial collection of 

rockfall data. The RAI is versatile tool that enables users to collect rockfall activity and prioritize 

mitigation measures within a data-driven, engineering-based framework. Such a measure is 

important for assessing the resilience of our infrastructure today. 

To capture the influence of climate change on rockfall activity, the progressive failures 

observed in rockslopes must be quantified and projected by using a rational, data-driven 

engineering approach. The change in rock slope morphology at the study sites showed 

continuous rockfall, talus accumulation, and overall progressive mass wasting.  It is understood 

that rockfall events may be tied to freeze/thaw cycling and heavy precipitation, suggesting that 

the influence of a changing climate is important to future rockfall activity. Although our 

quantitative baseline for our slope study sites was limited to five years, this data set provides 

invaluable information regarding prolonged rockfall activity, which is essential for assessing the 

long-term impacts of a changing climate. The key to understanding a correlation with the 

dynamics of our study sites in the face of a changing climate will be to use our baseline 

measurements with new digital terrain models (DTMs) (via terrain laser scanning and and 

structure from motion scanning).  Facing limited research budgets and changing priorities, the 

team suggests collecting new DTM data approximately every five-or-so years to continue this 

analysis while capturing the variability observed in yearly weather.  The repeated surveys can 

then be used to formulate better mitigation strategies for the rockfall patterns observed, as well as 
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to develop mitigation budgets.  Thus, a data-driven approach based on the collected data is 

paramount to the safety and resilience of critical transportation corridors today and in the future.    

On the basis of the collected serial data and the Rockfall Activity Index (RAI) approach, 

a framework for assessing projected rockslope activity based on changes in time-dependent 

classification and DTM evolution was developed, entitled the Rockslope Evolution Framework 

(REF). This prototype was used to project the potential impacts of a changing climate, in this 

case using temperature increase as a proxy for increasing rockfall activity. The results showed 

that the yearly RAI for a given site may increase significantly more than the observed activity 

rate. That is, the slow and gradual increase of activity due to climate change may result in 

significant increases in rockfall impacts—a direct threat to the safety and resilience of 

critical corridors. In light of this possibility, creating more resilient critical infrastructure will 

require adaptation of planning tools to address rockfall today (the RAI) and in the future (the 

REF). By considering the looming threats of climate change, we enable planners and engineers 

to make data-driven solutions for a more resilient future.  

There is a lot of uncertainty in predicting climate change that far into the future given that 

policies, technology, habits, lifestyles, and priorities will all continue to evolve.  Nevertheless, a 

longer-term perspective and monitoring campaign could create more definitive connections 

between the individual weather events that are part of climate change and the dynamics of 

rockfall and slope stability. Each perspective is important to further risk assessment, and 

mitigation planning with forecasting models can also be used to estimate the precipitation at each 

study site.  Note that the two charts provided for the study sites showed increasing precipitation 

and a profoundly varying range of precipitation events, which are correlated to climate change, 

in general. 
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Suitability of structure from motion for rock-slope assessment 

O’Banion, M.S., Olsen, M.J., Rault, C., Wartman, J., and Cunningham, K. 

Abstract 

This study examines three sites with unstable rock-slopes that were surveyed in Alaska using both TLS and SfM 

techniques. The datasets were acquired simultaneously and linked to a rigorous survey control network. An 

accuracy evaluation of the SfM-derived surface models was performed using TLS data and numerous reflectorless 

total station observations collected across the rock-slopes. A quality evaluation was conducted to examine 

differences in point density, model completeness, and distributions of morphological properties between the SfM and 

TLS datasets. The results indicate that SfM is a viable option for unstable rock-slope assessment when a sufficient 

quantity of images with adequate overlap are acquired, and the reconstruction is tied to a survey control network. 

The best results in terms of accuracy and completeness were achieved when combining both UAS-based aerial 

imagery and terrestrial imagery for the SfM reconstruction. However, artifacts observed in the SfM data, such as 

over-smoothing and geometric inconsistencies bring into question the suitability of SfM for detection of small 

changes over time. 

 

Keywords: rock-slopes, structure from motion (SfM), accuracy assessment, lidar, terrestrial laser scanning (TLS), 

unmanned aircraft systems (UAS) 

 

Introduction 

Terrestrial laser scanning (TLS), also known as terrestrial or ground-based lidar, has proven to be a valuable, 

reliable technique for the assessment and monitoring of unstable slopes; however, even with numerous setups, 

portions of a slope or cliff may not be visible from areas accessible to the scanner, resulting in the inability to 

capture important features of the slope morphology. In lieu of TLS, unmanned aircraft systems (UAS) and a 
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handheld camera may gather overlapping digital imagery to generate similar three-dimensional (3D) point clouds by 

way of Structure from Motion (SfM) and multi-view stereo (MVS) photogrammetric techniques (hereafter 

collectively referred to as SfM).  Use of UAS can provide superior accessibility to cliffs and the acquisition of cliff 

geometry compared to TLS methods. 

This study examines three unstable road cuts along the Glenn Highway in Alaska, U.S.A. with different 

morphologies to evaluate the suitability of SfM for rock-slope assessment. SfM suitability is judged relative to TLS 

methods with regards to absolute accuracy (i.e., including geo-referencing error) and quality of the 3D data. While 

previous studies have attempted to assess the accuracy of SfM-based image reconstructions (e.g., Harwin and 

Lucieer, 2012; James and Robson, 2012; Eltner et al., 2016; Westoby et al., 2012; Fonstad et al., 2013; Lato et al., 

2015; James et al., 2017a; James et al., 2017b), they commonly use a single, independent reference consisting of 

airborne or terrestrial lidar. In many of these cases, no accuracy assessment of the lidar-based reference is performed 

or documented. This study presents an accuracy assessment that is both rigorous and comprehensive. Two 

independent references are used for the accuracy assessment: co-acquired TLS data and a collection of reflectorless 

total station (TS) points collected across the surface of the rock-slopes. The rock-slope TS points serve to evaluate 

the accuracy of the TLS data, ensuring it is appropriate for judging the accuracy of the SfM data. The rock-slope TS 

points also serve as a second reference for judging the accuracy of the SfM data. Occasionally, studies will report 

accuracies of SfM models that simply represent geo-referencing residuals from surveyed ground control points 

(GCPs) or based on discrepancies with surveyed checkpoints. When surveyed checkpoints are visible in the imagery 

as high contrast targets (e.g., Harwin and Lucieer, 2012; Fassi et al., 2013), the accuracy assessment can be overly 

optimistic. The performance of a SfM algorithm when automatically identifying key features in overlapping imagery 

is directly correlated to the presence of high contrast, textural differences in photographs. Employing highly visible, 

high contrast GCPs, therefore, results in evaluating accuracy at locations where SfM is theoretically performing at 

its best (Javadnejad and Gillins, 2016). The independent references used for this study were chosen to evaluate the 

accuracy throughout the majority of the SfM reconstruction. 

This paper presents an evaluation of the suitability of SfM for rock-slope assessment.  Accuracy is analyzed 

through a comparison with two high-accuracy, high precision independent references, tied to a rigorous survey 

control network. In addition, a quality assessment of SfM data relative to TLS examines important factors such as 

point density, surface model completeness, and surface morphology. These additional quality metrics have not been 
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thoroughly or formally evaluated in prior work, which has focused primarily on geometric accuracy. In the context 

of the accuracy and quality evaluations, comparisons were performed between ground and UAS-based SfM models, 

as well as, combination SfM (Combo SfM) models in which both ground and UAS-imagery was utilized.  

 

Background 

Road cuts through rocky terrain often result in steep rock-slopes, which can be susceptible to rockfall – a 

process involving detachment, fall, rolling, and bouncing of rocks (Hungr et al., 2014). Rockfall is a reoccurring 

hazard along transportation corridors in mountainous regions throughout North America. Tens of millions of dollars 

($US) are spent annually on rock-slope maintenance and mitigation (Turner and Jayaprakash, 2013). 

Current methods for characterization of rockfall hazards and risk rely on rock mass classification (e.g., 

Pantelidis, 2009) or rockfall hazard rating systems (e.g., Pierson, 2013) that depend on manual visual inspection and 

simplified calculations. These methods are both qualitative in nature (Budetta and Nappi, 2013) and coarse in spatial 

resolution. TLS allows for systematic acquisition of rock-slope 3D geometry at high, cm-scale spatial resolutions 

(Jaboyedoff et al., 2012; Abellán et al., 2014). TLS has been proven as an appropriate method for rock-slope 

characterization (Jaboyedoff et al., 2012; Abellán et al., 2009; Abellán et al., 2010; Abellán et al., 2014; Alba et al., 

2009; Alba and Scaioni, 2010; Kemeny and Turner, 2008; Rabatel et al., 2008; Girardeau-Montaut, 2017; Kromer et 

al., 2015; Gigli and Casagli, 2011), and monitoring (Lim et al., 2005; Lim et al., 2010; Rosser et al., 2005; Rosser et 

al., 2007; Lato et al., 2009; Olsen et al., 2009; Olsen, 2013). 

TLS offers advantages in terms of accuracy, repeatability, and reliability; however, challenges exist such as cost 

and the common occurrence of occlusions. SfM-based image reconstruction has the potential to solve these 

challenges (Fonstad et al., 2013; Chandler and Buckley, 2016). Acquisition of imagery for SfM reconstruction using 

a UAS offers further advantages in terms of terrain accessibility (e.g., Lato et al., 2015). UAS imagery acquisition 

and subsequent SfM model reconstruction have proven useful for landslide analysis and digital rock outcrop 

acquisition. Researchers have utilized repeat surveys from UAS platforms to quantify landslide displacements of 

large, slow-moving landslides (Niethammer et al., 2012; Fernández et al., 2015; Fernández et al., 2016; Lucieer et 

al., 2014; Turner et al., 2015). Others have utilized the imagery for mapping landslide features such as scarps and 

deposits for small areas (e.g., Al-Rawabdeh et al., 2016). For example, Murphy et al. (2016) utilized UAS to map 

damages from the 2014 Oso landslide in Washington, and Greenwood et al. (2016) utilized UAS to map rock 
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masses and slides in Nepal after the 2015 earthquake event. Lastly, Manousakis et al. (2016) utilized UAS SfM for 

rockfall hazard analysis. SfM-based digital outcrop acquisition has been successfully performed by various studies 

(e.g., James and Robson, 2012; Bemis et al., 2014; Lato et al., 2015a; Wilkinson et al., 2016). However, results of a 

comparison with co-acquired TLS data from Wilkinson et al. (2016) indicates that the precision of SfM data can 

deteriorate near the outcrop edges and over-smoothing rounds off sharp rock edges within the outcrop. It is also 

worth noting that Wilkinson et al. (2016) states that an “elaborate” data acquisition and processing approach is often 

required to achieve results similar to TLS. 

Eltner et al. (2016) present an extensive review of SfM accuracies reported by 39 different published 

geoscientific studies. The following factors introduce error into SfM-based 3D reconstructions: the scale of the 

object/environment being captured, the distance of the camera from the imaged object(s), camera calibration, image 

network geometry, image-matching performance, surface texture and lighting conditions, and GCP characteristics 

(Eltner et al., 2016). In terms of accuracy of SfM, Eltner et al. (2016) report no significant issues that cannot be 

mitigated by placement of GCPs, camera calibration or a high number of images. This is true with the exception to 

having a lack of textural detail in the imaged scene. Homogeneous surface texture commonly prevents automated 

feature matching algorithms from resolving coincident points and generating accurate 3D geometry (Bemis et al., 

2014). Nevertheless, many aspects of image acquisition, GCP network design, and subsequent SfM processing vary 

substantially study to study. These ad-hoc approaches result in difficulties when attempting to systematically 

compare accuracies reported by numerous studies (Eltner et al., 2016; James et al., 2017a), and when reporting 

accuracies of a given SfM collection based on previously achieved accuracies. These disparities are partly due to 

unknowns with regards to performance and uncertainty associated with image feature matching utilized by SfM 

algorithms (Eltner et al., 2016), some of which are proprietary (e.g., Agisoft Photoscan). It is for this reason that the 

use of a trusted independent reference such as TLS is needed to appropriately judge the accuracy of SfM under the 

unique conditions and methods followed for a given study. 

 

Study Area 

The study area is located approximately 110 km northeast of Anchorage, Alaska, U.S.A. along the Glenn 

Highway (Fig. 1). The region is primarily comprised of sedimentary rocks of the Matanuska and Chickaloon 

Formations. The Matanuska Formation is a marine sedimentary deposit formed during the orogenic rise of the 
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Talkeetna Mountains. The Chickaloon Formation was deposited as propagating alluvial fans on top of the 

Matanuska Formation that formed as the Talkeetna Mountains were uplifted and sequentially eroded (Belowich, 

2006). The highway follows the glacial cut into the Chickaloon Formation; however, no other glacial evidence may 

be found in the area (Trop et al., 2015). Regions of the Matanuska Formation exposed in road cuts along the Glenn 

Highway largely consist of dark mudstones while Chickaloon Formation outcrops mainly consist of carbonaceous 

siltstone, coal, and sandstone (Trop et al., 2015). 

 

 

Fig. 1. Study area location plan. Three independent sites were selected: RS1, RS2, and RS3. Basemap imagery was 

provided by ESRI ArcGIS Online. 

 

Three independent sites were selected for this study (Fig. 2). Rock-Slope 1 (RS1, milepost 71) is a nearly 

vertical (70° to 90°) road cut approximately 50 to 60 m high and 140 m wide. RS1 is composed of well-indurated 

dark mudstone of the Matanuska Formation. Rock-Slope 2 (RS2, milepost 85.5) is a 60° road cut approximately 8-

10 m high and 40 m wide. RS2 consists of highly fractured, fine to medium-grained, moderately weathered grey and 

tan hard sandstone of the Chickaloon Formation. The fractures are oriented such that the sandstone is broken into 

cobble-sized blocks. Rock-Slope 3 (RS3, milepost 87) is a 55° slope approximately 10 m high and 110 m wide. RS3 

is predominantly comprised of soft carbonaceous siltstone of the Chickaloon Formation that has been intruded by 
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hard, well-indurated mafic basalt sills. Numerous cantilever overhangs exist on RS3 because of localized erosion of 

the soft siltstone beneath the sills. 

 

 

Fig. 2. SfM-derived 5 cm surface models of the three rock slopes (RS1, RS2, and RS3) with the layout of black & 

white targets used as ground control points (GCP). 

 

Methodology 

Data Collection 

Survey Control. A survey control network was developed for each study site to ensure proper scaling of the SfM 

reconstructions and for geo-referencing of both the SfM and TLS data. The control network consisted of Static and 

Rapid Static (RS), Global Navigation Satellite System (GNSS) occupations, and paper-based black & white targets, 

which served as GCPs. Two types of paper-based GCPs were used, generic black & white targets, commonly used 

in TLS survey workflows, and PhotoScan branded targets which can be auto-extracted in the Agisoft PhotoScan 
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software (Agisoft, 2017). The layout of GCPs for each rock-slope site is presented in Fig. 2. Sites RS1 and RS3 have 

GCPs that are not located on the selected rock-slope surface. These GCPs were used during development of the SfM 

models; however, they do not lie within the clipped region of the rock-slope. Components of the survey control 

network were tied together using a Leica TS15 (1”) total station instrument. Two total station positions were used to 

establish the control network for both RS1 and RS3. A single total station position was adequate for RS2 given its 

limited horizontal and vertical extent. Processing of the total station data and subsequent adjustment of the control 

network was performed in StarNet 8.0 (Control Network Processing Section). The control network was established 

in the Alaska State Plane Coordinate System Zone 4, North American Datum 1983 (2011) Epoch 2010.00. 

Orthometric heights were estimated in the North American Vertical Datum of 1988 by differencing the ellipsoid 

heights with geoid heights from GEOID 12A. 

Two types of RS observations were collected: RS control points positioned along the highway and marked with 

a magnetic survey nail, and scan position occupations acquired using a scanner mounted GNSS receiver. A survey-

grade GNSS receiver (Leica GS14) was set up over an established control point and served as a base station to post-

process short (< 15 min) RS GNSS observations using relative positioning techniques.  

RS control points were incorporated into the survey control network using a TS instrument, prism rod, and 360° 

prism. The center point of all black & white paper target placed within a scanned/imaged scene was acquired by the 

TS in reflectorless mode.  

The TS was also used to acquire reflectorless points scattered across the rock-slope faces. The purpose of these 

points is twofold, first to serve as an independent reference for evaluating the accuracy of the TLS-derived surface 

models and second, to evaluate the accuracy of SfM models in portions of the rock-slope unoccupied by GCPs. The 

rock-slope TS points are not to be confused with the survey control network; they were simply acquired with the TS 

instrument during the development of the control network. 

 

TLS Survey. TLS surveys were performed using a Riegl VZ-400 laser scanner following a stop-and-go scanning 

approach similar to that presented in (Olsen et al., 2009; Olsen et al., 2015) for efficient mobilization of equipment 

along the shoulder lane of the highway. The TLS configuration included a calibrated, digital SLR (Nikon D700) 

camera and survey-grade Leica GS14 GNSS receiver mounted on top with known calibrated offsets. Precise 

inclination sensors (±0.008°, 1- ) integrated into the TLS instrument (Silvia and Olsen, 2012) enable the scans to be 
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accurately leveled despite the unlevel wagon platform. Electronic Distance Measurement (EDM) scaling corrections 

were applied for atmospheric conditions, including temperature, pressure, and relative humidity. All scans had a 

field-of-view of 360° horizontally and +60° to -40° vertically relative to the horizontal plane. Scans were acquired 

from the shoulder opposite of the rock-slope at 40-60 m intervals (adapting to features of interest on the cliff) with 

an angular resolution of between 0.02 and 0.05°. 

Prior to collection of TLS scans at each site, black and white pattern targets mounted to rigid clipboards were 

placed throughout the anticipated scanned scene. 

 

UAS Imagery. Aerial photographs were obtained using a DJI Phantom 3 Professional quadcopter UAS platform. The 

Phantom 3 weighs 1.3 kg (including camera payload), is approximately 40-cm-wide, and has a flight endurance of 

about 20 minutes. The UAS platform includes an integrated 3-axis gimbal system to stabilize the camera during 

flight, thus minimizing vibration-induced blur in the aerial images. The gimbal provides a pitch range of -90° (i.e., 

nadir) to +30°, which can be adjusted in-flight using DJI's mobile flight control application GO. The Phantom 3's 

integrated camera has a 20 mm (35-mm equivalent) f/2.8 lens coupled with a 6.2 mm x 4.6 mm sensor that produces 

12.4-megapixel images with an effective resolution of 4000 x 3000 pixels. Similar to the terrestrial images, the 

aerial photographs were obtained with a fixed focal length (i.e., no zooming), in bright daylight, and recorded in 

RAW image format. The UAS was flown in the manual mode (i.e., without a pre-programmed flight path) by a pilot 

positioned within sight of the aircraft at the base of each rock-slope. An automated flight plan solution that was 

capable of maintaining a safe distance from the rock-slopes while avoiding obstacles was not available. During the 

flight, a second crew member operated the UAS camera using the DJI GO application. The UAS was flown at 

altitudes ranging from approximately 10 m to 100 m above the base of each rock-slope. The aerial platform provided 

greater flexibility for positioning the camera system, allowing us to obtain images from a variety of perspectives 

including close-range views of incised and recessed morphological features (e.g. small gorges) and broad-range 

views of nearly the entire rock-slope. Attempts were made to capture imagery with the camera oriented 

approximately perpendicular to the rock-slope surface. In general, the aerial photographs of the rock-slope face were 

obtained in a gridlike pattern with ~8 m horizontal spacing along ~8 m-spaced lines of fixed altitude, resulting in 

approximately 80% overlap in the images. Photographs were captured at downward pitches (-60° to -10°), capturing 

benches and other features that were not visible from the ground. The median distance of the UAS from the rock-
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slope was 11 m, 10 m, and 14 m for RS1, RS2, and RS3, respectfully. The UAS aerial photography required about 

40 minutes to complete at each site, including time for at least one landing and re-launch sequence for battery 

replacement. 

 

Terrestrial Imagery. Terrestrial photographs were acquired using a Sony Cyber-shot DSC-RX10 II digital camera 

with a 24-200 mm (35-mm equivalent) f/2.8 lens and 13.2 mm by 8.8 mm sensor, resulting in images with an 

effective resolution of 20.2 megapixels (5496 x 3672). Before the fieldwork in Alaska, we performed trial 

photography campaigns at a benchmarked outdoor test site to determine the optimal camera settings for the SfM 

acquisition. In our test trials, we obtained the most accurate results when the camera's focal length was fixed at 24 

mm, and the aperture was set to f/5.6. Adopting these settings, we photographed the rock-slopes in bright ambient 

daylight (flash was disabled) and recorded the images in RAW format. Although storage intensive, the RAW image 

format produces minimally processed "digital negatives" whose white balance and color grading can be 

subsequently adjusted, if necessary. The photographer shot the images in handheld mode from a position on the far 

road shoulder of the 2-lane highway located at the base of the rock-slopes. The camera-to-subject distances varied 

depending on the width of the shoulder area. Median camera-to-subject distances were 20 m, 9 m, and 10 m for 

RS1, RS2, and RS3, respectfully. Photograph locations were obtained at ~5 m intervals along the base of the rock-

slopes, with the aim of having at least 50% vertical and horizontal overlap in the neighboring images. In general, 

single photographs from multiple perspectives were preferred over multiple photographs taken by pivoting from a 

single location. The terrestrial photography required about an hour to complete at each site. 

 

Data Processing 

Control network processing. The GNSS base station coordinates were established using the Static processing 

available through the National Geodetic Survey’s Online Positioning User Service (OPUS-S). RS GNSS control 

points were processed against the base station using baseline vector processing in Leica Geo Office v.8.3 (Leica 

Geosystems, 2012). These coordinates were also obtained using rapid-static processing available through the 

National Geodetic Survey’s Online Positioning User Service (OPUS-RS) for validation.  

For each site, a 3D, constrained, least squares adjustment of the control network was completed using StarNet 

8.0 to produce the final coordinates and uncertainties for the control targets and reflectorless measurements on the 
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rock-slope surfaces. The following observations were input for the adjustment: GNSS control point coordinates and 

associated uncertainties obtained from OPUS (peak-to-peak error) and OPUS-RS (standard deviations), GNSS 

baseline vectors between the base station and rover positions with associated covariance matrices, and the measured 

distances, horizontal angles, vertical angles, and uncertainties for the total station measurements for each setup.  The 

GNSS baseline vector uncertainties were scaled by a factor of 25 to account for the overly optimistic estimates (sub-

mm) obtained during baseline processing (Ovstedal, 2000; Kashani et al., 2004; Weaver et al., 2018). A Chi-square 

statistical test against the stochastic model was completed and passed at the 5% level.  Estimated propagated errors 

of the coordinates for the stations were <1.5 cm (3D RMS) at the network level and <7mm (3D RMS) at the local 

level. Note that these estimates do not include geoid modeling error. 

 

TLS Processing. Post-processing of TLS data is required to merge individual scans into a cohesive point cloud. This 

process requires adjustment of the position and orientation of a given scan location, resulting in a rigid-body 

transformation of the 3D point cloud acquired from that location. Information derived from the onboard inclination 

sensors, the top-mounted GNSS receiver and the relative position of GCP targets captured in the scan enable the 

determination of transformation parameters, including rotations and translations along orthogonal axes. 

Prior to performing local registration of the point cloud data, individual scans were leveled in accordance with 

values reported by the onboard inclination sensors. Local registration and geo-referencing of the TLS data was 

performed in Leica Cyclone v.9.1 software (Leica Geosystems, 2015) using target matches and cloud-to-cloud 

surface matching constraints. The co-registered point clouds were subsequently geo-referenced using both the 

adjusted survey control network and the scan position coordinates derived from the top-mounted GNSS receiver.   

Quality control of point cloud registrations included a review of misalignment error vectors for target 

constraints, a review of total error associated with cloud-to-cloud constraints, and visual inspection of registered 

point clouds, including cross-section inspection. Visual inspections of the registered point clouds were performed to 

identify the presence of any point cloud misalignment artifacts that would require re-registration. 

 

SfM Processing. Image-based 3D reconstruction was performed using Agisoft PhotoScan Professional v.1.3.4 

(Agisoft, 2017). Three models were developed for each study site: Ground (solely ground-based imagery), UAS 

(only the UAS imagery), and Combo (ground and UAS imagery). Prior to importing the digital images into 
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PhotoScan, the UAS-based images (DNG format) were processed using the DJI DNG Cleaner software and both the 

cleaned DNG and RAW images were converted to JPEG using the Adobe Lightroom software. 

The “Align Photos” tool was used for initial camera alignment and subsequent development of a sparse 3D 

point cloud with the following settings: Accuracy = High, Generic preselection, Key point limit = 45,000, and Tie 

point limit = 4,000. Following the creation of the sparse point cloud, GCP coordinates derived from the survey 

control network for each site were imported. The “Detect Markers” tool was used to automatically extract the 

centers of any PhotoScan branded targets. The centers of additional non-PhotoScan targets were manually extracted 

from the imagery. All marker assignments, including those auto-extracted from PhotoScan targets, were reviewed to 

ensure proper extraction of GCP centers and to omit constraints relying on blurry images. After this thorough 

review, the “Optimize Cameras” tool recalculated external and internal orientation (including lens distortion 

parameters) of the camera(s) to refine all GCP markers. The “Build Dense Cloud” tool then generated the final high-

resolution point cloud with the following settings: Quality = High, and Depth filtering = Mild. 

 

Surface Generation. Finalized SfM and TLS point clouds were cropped to identical extents, including only portions 

of a given rock-slope to be studied. Coarse vegetation removal was performed by manually selecting and deleting 

regions of vegetation in the point cloud. Efforts were made to be consistent when performing manual vegetation 

removal; however, in many cases, vegetation in a given area appeared differently in the SfM and TLS datasets. For 

example, a dense shrub observed as a surficial shell of points in the SfM data may appear as a noisy fuzz of points in 

the TLS data resulting from the laser beam penetrating the foliage resulting in mixed pixels. 3D surface models (5 

cm resolution) for each study site were created from the cropped and cleaned point cloud data using the optimal 

plane triangulation methodology presented in (Olsen et al., 2015).  

 

Accuracy Assessment 

Two independent references (both tied to the aforementioned control network) are available for assessing the 

accuracy of the SfM models: the TLS-derived surface models, and the rock-slope TS points. In this case, the TLS 

surface models are preferred over the rock-slope TS points because they offer many more nodes/vertices for 3D 

differencing. When comparing two surface models of similar extent, all nodes that comprise a surface mesh can be 

compared to those of the reference surface. The quantity of rock-slope TS points for the different study sites ranges 
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from 50 to 100 discrete points, which is far fewer than the 1 x 105 to 2 x 106 nodes made available by the surface 

models.  

Prior to assessing the accuracy of the SfM-derived surface models, the accuracy of the TLS-derived models was 

evaluated using the rock-slope TS points. This important step validates the TLS surface models as an appropriate 

reference for assessing the accuracy of the SfM models. They also serve as an additional reference for assessing the 

accuracy of the SfM models. 

Surface-to-surface (comparing TLS and SfM surfaces) and surface-to-point (comparing a surface to the rock-

slope TS points) assessments were completed using the “Color from Distance” tool in Maptek I-Site Studio 6.0 

software (Maptek, 2016). A maximum distance threshold of + 0.20 m was chosen as not to include larger 

discrepancies associated with the presence of inconsistent vegetation removal. The reported distances represent 3D 

discrepancies measured along the surface normal of the base surface to the closest point or surface node. 

Comparison of the interpolated surface models was chosen instead of a solely point-to-point evaluation because the 

accuracy of surface models is more relevant to our preferred, unstable rock-slope assessment and monitoring 

techniques (Olsen et al., 2015; Dunham et al., 2017). In addition, point-to-point comparisons are more appropriate 

for preliminary error assessments as they are prone to outliers and differing point densities (Eltner et al., 2016). 

Nevertheless, point-to-point comparisons performed using CloudCompare software (Girardeau-Montaut, 2017) 

achieved similar results. 

 

Quality Evaluation 

The SfM quality evaluation focuses on the suitability of SfM for the assessment of rock-slopes. Multiple 

characteristics including point density, completeness, and the capabilities of SfM to capture surface morphology 

(e.g., slope and roughness) were evaluated relative to TLS.  

Point density was determined by sub-sampling the TLS and SfM point clouds into 5 x 5 cm grid cells and 

recording the number of points within each cell. The completeness metric was determined based on relative values 

of model surface area at each site. A baseline surface area representing full completeness was established for each 

site based on the Combo SFM point cloud with surface data gaps (holes) filled. Small holes in the 3D surface 

models were filled using the thin plate spline technique presented in (Olsen et al., 2015). The Combo SfM model 

was assumed to be the most complete because of its use of both ground and UAS-based imagery which minimizes 
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the occurrence of data gaps. Completeness values were determined by comparing the surface area of a model with 

no hole filling to the site-specific baseline surface area representative of a complete model (Eq. 1). 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = (
𝑆𝑢𝑟𝑓.  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡 𝐻𝑜𝑙𝑒𝑠 𝐹𝑖𝑙𝑙𝑒𝑑

𝑆𝑢𝑟𝑓.  𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑜𝑚𝑏𝑜 𝑆𝑓𝑀 𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝐻𝑜𝑙𝑒𝑠 𝐹𝑖𝑙𝑙𝑒𝑑
) × 100 (1) 

Comparative distribution plots were developed to present the differences in surface morphology captured by 

TLS and SfM methods. The chosen surface parameters include slope, surface roughness, and the Rockfall Activity 

Index (RAI). RAI is a point-cloud-derived, morphology-based classification methodology used to evaluate rockfall 

hazards (Dunham et al., 2017). Two types of surface roughness (standard deviation of slope) were examined:  small 

window (SW) roughness, which is computed using a 35 x 35 cm window; and large window (LW) roughness 

utilizing an 85 x 85 cm window. The window sizes were selected because of their relevance to the RAI 

methodology. 

Lastly, a visual qualitative inspection of the TLS and SfM derived point clouds was performed. Both TLS and 

SfM point clouds were added to the same 3D visualization for direct visual comparison allowing for detailed 

inspection of geometric discrepancies between the TLS and SfM datasets. 

Results 

SfM and TLS point cloud data attributes (Table 1) include the type of point cloud, the number of images used 

for SfM reconstruction or the number of scans for TLS data, the quantity of GCP targets used for registration, the 

total amount of points in the point cloud on the rock-slope surface, and the mean point density for each dataset. 

 

Table I. Details of the SfM and TLS point clouds. 

Site 

Approx. 

Slope 

Surface 

Area (m²) 

Type 

Number of 

Images/Sc

ans 

Number of 

GCPs 
Total Points 

Mean 

Point 

Density 

(pts/m²) 

RS1 9,300 

Ground SfM 140 29 43,441,327 6,151 

UAS SfM 132 25 19,807,042 2,804 

Combo SfM 272 29 39,411,287 5,579 

TLS 6 29 55,681,383 7,875 

RS2 450 

Ground SfM 124 8 43,839,216 122,830 

UAS SfM 30 5 4,420,183 12,378 

Combo SfM 154 7 31,091,288 86,751 

TLS 3 10 12,095,566 33,871 

RS3 1,680 

Ground SfM 164 29 81,738,569 63,585 

UAS SfM 61 25 11,571,375 9,001 

Combo SfM 225 29 63,474,055 49,361 

TLS 5 30 27,881,655 21,684 
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The number of images and TLS scans, and GCPs used for RS1 and RS3 are very similar; however, their 

approximate surface areas are quite different (further discussed in Discussion section). Site RS2 required fewer 

images, TLS scans, and GCPs due to its relatively smaller horizontal extent. For RS1, the TLS point cloud has the 

largest number of points, followed by the Ground SfM, Combo SfM, and UAS SfM point clouds, listed in order of 

decreasing point count. The point count for RS2 and RS3 indicate a different trend in which the Ground SfM dataset 

has the largest quantity of points, followed by the Combo SfM, TLS, and UAS SfM datasets. A significant 

difference in total points exists between the TLS datasets for RS1 and RS2 despite the fact that there is a similar 

number of scans completed.  This occurs predominately because the rock-slope is much taller for RS1. For all three 

rock-slope sites, the Ground SfM model has a greater number of points and higher mean point density when 

compared to the Combo SfM model. Average ground resolution (i.e., ground sampled distance (GSD)) of the SfM 

imagery as reported by PhotoScan is as follows: 7.12 mm/pixel, 12.5 mm/pixel, and 9.18 mm/pixel for the RS1 

Ground, UAS, and Combo SfM models, respectfully; 1.77 mm/pixel, 5.85 mm/pixel, and 2.25 mm/pixel for the RS2 

Ground, UAS, and Combo SfM models, respectfully; and 2.09 mm/pixel, 6.93 mm/pixel, and 2.94 mm/pixel for the 

RS3 Ground, UAS, and Combo SfM models, respectfully. 

Accuracy Assessment 

Rock-slope surface maps depicting the spatial distribution of geometric discrepancies identified between the 

SfM and TLS surface models were developed for each of the study sites (Fig. 3). The minimal discrepancy between 

the SfM and TLS surface models is represented by regions colored in green. Regions colored in shades of blue 

represent where the SfM surface is located in front of the TLS surface, and shades of red represent where the SfM 

surface is located behind the TLS surface model. Regions of the rock-slope colored magenta indicate surface 

discrepancies larger than a + 0.2 m threshold to omit vegetation-derived discrepancies from the evaluation. 

Similar error patterns are observed for the various SfM surface models depicted in Fig. 3. The Ground and 

Combo SfM surface models demonstrate close alignment with the TLS surfaces; while, the UAS SfM surfaces result 

in a distinct error pattern, which includes a discontinuity across the rock-slope face where discrepancies with the 

TLS surface transition from positive to negative. Statistics, including the mean, standard deviation, RMSE, and 95% 

confidence error of the 3D discrepancies of the surface-to-surface comparisons are included in Table 2. The 

percentage of the SfM-derived surface model in front of the TLS surface model is also provided. Values deviating 

significantly from 50% indicate a drifting trend for the SfM surface. 
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Results of the surface-to-surface comparison between SfM and TLS models indicate 3D errors at 95% 

confidence ranging from +0.044 m to +0.048 m for Ground SfM models, +0.048 m to +0.112 m for UAS SfM 

models, and from +0.041 m to +0.048 m for Combo SfM models. Likewise, the results of the surface-to-points 

comparison between TLS and SfM surface models and the rock-slope TS points are presented in Table 3. 

Comparison of the TLS surface models to the TS points indicates a consistent surface model accuracy of +0.015 m 

at 95% confidence across all sites. 

 

Fig. 3. Geometric discrepancies for RS3 identified by differencing TLS and SfM surface models. 

 

Table II. Statistics regarding 3D discrepancies between SfM and TLS-derived 5 cm resolution 3D surfaces. 

SfM  

Model 
Type 

Mean Diff.  

(m) 
σ (m) RMSE (m) 

Error  

95% Conf. 

(m) 

% of SfM 

in Front of 

TLS 

RS1 

Ground SfM -0.003 + 0.029 + 0.029 + 0.047 55.4 

UAS SfM -0.051 + 0.046 + 0.069 + 0.112 94.1 

Combo SfM -0.006 + 0.029 + 0.030 + 0.048 60.5 

RS2 

Ground SfM -0.002 + 0.027 + 0.027 + 0.044 58.3 

UAS SfM -0.010 + 0.028 + 0.030 + 0.048 65.3 

Combo SfM -0.010 + 0.023 + 0.025 + 0.041 72.9 

RS3 

Ground SfM 0.000 + 0.030 + 0.030 + 0.048 56.9 

UAS SfM 0.020 + 0.036 + 0.041 + 0.066 23.0 

Combo SfM 0.003 + 0.026 + 0.027 + 0.043 43.8 
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Table III. Statistics regarding 3D geometric discrepancies between SfM and TLS-derived 5 cm resolution 3D 

surfaces and the Rock-Slope TS points. 

 

Site Type 
Mean 

Diff. (m) 
σ (m) RMSE (m) 

Error  

95% 

Conf. (m) 

% of 

Surface in 

Front of 

TS Points 

RS1 

Ground SfM -0.001 + 0.015 + 0.015 + 0.025 57.14 

UAS SfM -0.032 + 0.041 + 0.052 + 0.084 82.69 

Combo SfM -0.006 + 0.020 + 0.021 + 0.033 56.19 

TLS 0.002 + 0.009 + 0.010 + 0.015 41.90 

RS2 

Ground SfM 0.002 + 0.024 + 0.025 + 0.040 48.98 

UAS SfM 0.006 + 0.029 + 0.029 + 0.047 36.73 

Combo SfM -0.001 + 0.024 + 0.024 + 0.039 57.14 

TLS 0.003 + 0.009 + 0.009 + 0.015 31.25 

RS3 

Ground SfM -0.001 + 0.008 + 0.008 + 0.013 63.86 

UAS SfM 0.013 + 0.025 + 0.028 + 0.046 22.89 

Combo SfM -0.001 + 0.011 + 0.011 + 0.017 53.01 

TLS 0.001 + 0.009 + 0.009 + 0.014 55.42 

 

 

Quality Evaluation 

Point Density. Point density heat maps were developed for each of the three study sites (Fig. 4). The rock-slope 

point density maps demonstrate both the varying magnitude and spatial distribution of point density throughout the 

different SfM and TLS point cloud datasets. A smaller point density range was applied to the color ramp for RS2 to 

account for the lower point densities identified for RS2. The Ground SfM surface models for RS2 and RS3 are 

saturated with red due to their high point density relative to the other surface models generated for those sits. 

Comparative distribution plots of point density for the three rock-slope sites are presented in Fig. 5. 

Similar trends in point densities are observed for sites RS2 and RS3. Study site RS1 demonstrates unique results 

with regards to the relative distributions of point density. For RS1, the TLS point cloud has the highest mean point 

density and standard deviation. The ranking of the remaining SfM datasets is Ground SfM, Combo SfM, and UAS 

SfM, listed in order of decreasing mean point density. The point density evaluation for RS2 and RS3 reveals a 

ranking for mean point density that differs from that observed for RS1. Listed in order of decreasing mean point 

density, the Ground SfM data has the highest mean, followed by the Combo SfM, TLS, and UAS SfM datasets. 

Additionally, a clear separation in point density is observed for RS2 and RS3; this separation is not as apparent for 

RS1. When comparing results for RS2 and RS3, the standard deviations for all datasets are higher for RS2, resulting 

in a larger range of point density values across the rock-slope. The mean point density of the RS1 SfM models is 

around an order of magnitude smaller than the SfM point densities reported for RS2 and RS3. 
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All point density distributions computed for the Ground SfM model have a noticeable increase in low point 

density values. This increase is attributed to the relatively large quantity of zero values added to the Ground SfM 

datasets to account for data gaps that contribute to the lower completeness percentage of these data. Zero values 

were added to all SfM and TLS datasets to account for data gaps; however, changes to the distributions were 

negligible given the high completeness percentage of all but the Ground SfM datasets. 

 

Fig. 4. Point density heat maps for RS3 SfM and TLS-derived 3D point cloud data. 

 

 

Fig. 5. Comparative distribution plots of point density for SfM and TLS datasets. 

 

Completeness. Completeness of the surface models range from 89.4% to 99.5% for RS1, 96.9 % to 99.8% for RS2, 

and 94.4% to 99.5% for RS3. For all three study sites, the Ground SfM models result in the least complete surface 

model, and the UAS or the Combo SfM models are the most complete. Paradoxically, the Ground SfM models 

contained the largest number of points. 

 

Surficial Parameters. Comparative distribution plots were developed to present the differences in surface 

morphology captured by TLS and SfM methods. Surface parameters evaluated for this study include slope, SW 
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surface roughness, and LW surface roughness (Figs. 6-8). All distribution plots were normalized to account for 

differences in completeness amongst the surface models. 

Overall, the normalized distributions of slope for the surface models at each site are very similar. The results for 

RS1 indicate the distributions of slope for the Combo and UAS SfM models differ from the distributions of slope for 

the Ground SfM and TLS models. The Combo and UAS SfM datasets have a localized increase in slope values at 

around 40° that is not observed in the others. 

With regard to mean of SW roughness, the UAS SfM model is most similar to the TLS data for RS1, and the 

Ground SfM model is most similar to the TLS data for Sites RS2 and RS3. When examining standard deviation of 

SW roughness, the Combo SfM model is most similar to the TLS data for Sites RS1 and RS3, and the Ground SfM 

model is most similar to TLS for RS2 (Fig. 7). 

 

 

Fig. 6. Comparative distributions for surface slope. 

 

 

Fig. 7. Comparative distributions for small window (35x35 cm) roughness 

 

 

Fig. 8. Comparative distributions for large window (85x85 cm) roughness 
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For Site RS1, there is a clear separation in the distributions of SW roughness between the SfM and TLS datasets 

and the distributions for the Combo and UAS SfM models are very similar (Fig. 7). The TLS distribution of SW 

roughness for RS1 is significantly different from the SfM datasets, indicated by an average mean shift of + 3.4°. For 

Sites RS2 and RS3, the distributions of SW roughness for the Ground SfM data are slightly shifted toward a higher 

roughness when compared to the other SfM datasets. Results for RS2 indicate similar distributions of SW roughness 

for the Combo SfM and TLS datasets; however, the TLS and Ground SfM distributions become more aligned for 

SW roughness values > ~22°. The mean SW roughness values for the RS3 Combo SfM and TLS models are similar 

but, the distributions are different. The SW roughness distributions for the Combo SfM model has a clear increase in 

frequency at SW roughness values of ~5° that is not present in the TLS distribution (Fig. 7).  

In general, the results of the LW surface roughness evaluation are similar to those reported for the SW surface 

roughness with a few subtle differences. In terms of the mean of LW roughness, the UAS SfM model is most similar 

to the TLS data for RS1, the Combo SfM model is most similar to the TLS data for RS2, and the Ground SfM is 

most similar for RS3. When examining standard deviation of LW roughness, the Combo SfM model is most similar 

to the TLS data for Sites RS1 and RS2, and the Ground SfM model is most similar to TLS for RS3 (Fig. 8).  

For Sites RS2 and RS3, the distributions of LW roughness for the Ground and SfM data are slightly shifted 

toward a higher roughness when compared to the other SfM datasets. Results for RS2 indicate similar distributions 

of LW roughness for the Combo SfM and TLS datasets; however, the Combo SfM distribution has an increase in 

frequency at LW roughness values of ~15° with respect to the TLS distribution, and the Ground SfM model 

becomes more aligned with the TLS distribution for LW roughness values > ~25°. For Site RS3, the LW roughness 

distributions for all SfM models are shifted towards lower roughness values with respect to the TLS distributions. 

However, the SfM and TLS distributions become better aligned for LW roughness values > ~22°. 

 

Rock-Slope Morphology Classification. The RAI classification evaluation is presented as comparative histogram 

plots in Fig. 9. A significant over-prediction of intact rock (I) occurs for RS1 followed by an under-prediction of the 

fragmented (Df), closely spaced (Dc), and widely to moderately spaced (Dw) discontinuous rock units, as well as 

steep (Os) and cantilever (Oc) overhangs when compared to the TLS surface. The distribution of RAI classifications 

for RS2 is similar amongst the SfM and TLS surface models. The most significant discrepancies are an over-

prediction of Df and an under-prediction of Dw by the UAS SfM data. Similar to the results for RS1, we observe an 
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over-prediction of I and under-prediction of Dc for RS3; however, the discrepancies are not as large as those 

observed for RS1. 

Overall, the RAI classifications for Ground SfM-derived surfaces are most similar to the RAI classifications 

determined for the TLS surfaces. Example RAI classification maps for RS1 are presented in Fig. 10. The over-

prediction of RAI Class I observed in Fig. 9 is depicted in Fig. 10 by the dominance of bright green observed for the 

SfM surface model. The insets presented in Fig. 10 provide a close-up view of the RAI classifications for each of the 

surface models. The TLS inset shows the prevalence of Dc and Dw classifications that is not observed in the insets 

of the SfM-derived surface. 

 

Visual inspection. Qualitative inspection of the TLS and SfM point cloud data revealed a prevalence of over-

smoothing in the UAS and Combo SfM data. Many of the sharp edges associated with rock outcrop discontinuities, 

were observed to be more round and smooth when compared side-by-side with the TLS point cloud data. Over-

smoothing was not as apparent in the Ground SfM point cloud data. Simultaneous visualization of the TLS and SfM 

point clouds also revealed the ability of UAS-based SfM to, in some scenarios, outperform TLS with respect to 

seeing beneath vegetation. This is attributed to the ability of UAS to occupy numerous advantageous points of view, 

allowing imaging around and beneath spurious vegetation (e.g., small trees and isolated shrubs). In areas of dense 

ground cover, TLS is observed to outperform UAS-based SfM methods. 

 

 

 

Fig. 9. Comparative histogram plots for RAI classification. RAI classifications are as follows: Unclassified (U), 

Talus (T), Intact Rock (I), Fragmented discontinuous rock (Df), Closely spaced discontinuous rock (Dc), Widely to 

moderately spaced discontinuous rock (Dw), Steep overhang (Os), and Cantilever overhang (Oc). 
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Fig. 10. RAI classification for RS1. 

 

Discussion 

For study sites RS2 and RS3, the total number of points for the Ground SfM datasets is about three times that of 

the TLS point clouds. This is not the case for RS1 where the discrepancy may be attributed to differences in image 

acquisition that stem from both technique and the relatively large vertical and horizontal extent of RS1. Twenty-four 

additional images were used to create the Ground SfM point cloud for RS3 when compared to RS1. In retrospect, 

this amount is inadequate given RS1 is ~30 m longer and ~ 50 m higher than RS3. Nevertheless, when attempting to 

capture a large rock-slope like RS1 with overlapping handheld imagery, it can be difficult to judge if enough images 

have been acquired with sufficient overlap. 

The significant difference in TLS total points between sites RS1 and RS3 is attributed to differences is scanning 

geometry. Given the larger vertical extent and near vertical orientation of RS1, the TLS instrument was placed 

further away from the slope than for RS3 to ensure capture of the upper reaches. Increasing the distance between the 

TLS instrument and the area of interest will increase point spacing and decrease the total quantity of points, 

assuming the scanning resolution is unchanged. 

Having a greater number of points and higher mean point density for the Ground SfM models when compared 

to the Combo SfM models is counterintuitive given the additional images used to generate the Combo models. 
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When including more images in an SfM reconstruction, one would expect the point quantity to increase. It is 

possible that this peculiar behavior stems from some automated optimization routine in PhotoScan that omits images 

and associated points if other imagery is available for a given region and is thought to be of higher quality. Further 

investigation is required to validate this possibility.  

It is worth noting that the Combo SfM models generated for this study used an average of 217 images per site, 

compared to an average of 5 TLS scans per site. Assuming a reasonable scanning resolution is chosen, acquisition of 

5 TLS scans can be performed in approximately the same amount of time as acquiring a total of 217 images 

gathered with both UAS and ground-based cameras. In addition, the efficiency of TLS acquisition could be further 

increased by following direct geo-referencing techniques that eliminate the need for placing GCPs (Olsen et al., 

2009; Silvia and Olsen, 2012; Olsen et al., 2015), a technique currently being researched and evaluated (Carbonneau 

and Dietrich, 2017) but not yet widely available for SfM image acquisition campaigns that need to meet accuracies 

similar to those achievable with TLS. Mobile laser scanning (MLS) is a possible alternative for surveying these road 

cuts; however, the point density of MLS data is often significantly lower than that for static TLS data. With regard 

to road cuts, car/truck-based MLS can suffer from more severe point of view limitations than TLS. Because an MLS 

system commonly drives along the road, the resulting view of the rock-slope is more restricted when compared to 

the field of view of a TLS system set up across the road in the opposing road shoulder. In a scenario where the 

geospatial extent of a study area is significantly larger than that of this study, the efficiency benefits of UAS-based 

SfM are clear. TLS acquisition over large geospatial extents becomes time-consuming due to the mobilization of 

equipment from one scanning position to another. A UAS can cover these larger areas relatively quickly and 

efficiently and is not limited by hard to navigate terrain. 

 

Accuracy Assessment 

There is good agreement between both the Ground and Combo SfM surface models and the TLS-derived 

surfaces. Results indicate accuracies (95% confidence) ranging between + 0.044 m and + 0.048 m for Ground SfM, 

+ 0.041 m and + 0.048 m for Combo SfM, and + 0.0748 m and + 0.112 m for UAS SfM model. Discrepancies 

between the UAS SfM models and the TLS surfaces follow a pattern in which the intersection of the two planes 

follow a path roughly parallel to the layout of the GCPs placed along the base of the slope. For RS1, the UAS SfM 

model is tilted such that 94.1% of the surface lies in front of the TLS surface. This same behavior is observed across 
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the three study sites; however, the percentage of SfM surface that lies in front of the TLS surface changes. The 

percentages are more balanced in the case of RS2, with 65.3% in front of the TLS surface. The presence of a clear 

intersection between the UAS SfM and TLS surfaces that appear to be associated with the layout of the GCPs 

indicates the lack of localized regions of significant deformation in the SfM surface that would affect the relative 

accuracy of the model. This differencing pattern is indicative of a global geo-referencing error as opposed to 

localized geometric distortions. The increased error identified in the UAS SfM models is attributed to both the 

inability to extract all GCPs in the UAS-based imagery, as well as, difficulties in accurately extracting the center of 

GCPs in the UAS imagery. Accurate extraction of GCPs is made difficult by the presence of pixilation in the 

imagery resulting from sampling at a large GSD relative to the ground-based imagery.  

Ground-based SfM can result in high accuracy 3D data; however, it is plagued by numerous occlusions, similar 

to and often more severe than those seen in TLS data. The TLS outperformed ground-based SfM with respect to 

completeness even though images were acquired from many more locations/points of view than TLS scan positions 

(Table 1). This effect is likely attributed to the fundamental difference in passive and active remote sensing 

techniques employed by digital photography and TLS, respectively. In this case, the use of an active light source 

allowed TLS to capture meaningful geometric data at further distances than the handheld camera used for SfM 

image acquisition. While the TLS models were able to obtain more sampling directly below thick vegetation for 

creating a bare-earth surface model, the UAS SfM models demonstrated superior performance in capturing bare-

earth behind and around sparser vegetation due to the flexible look angle.  

Results of the surface-to-surface and surface-to-points (TS points) accuracy assessments reveal a consistent 

accuracy ranking of the SfM surface models, except for RS3. For RS1 and RS2, the Ground SfM model was 

identified as the most accurate based on the mean difference between the surface models and the references, 

followed by the Combo, and UAS SfM models. The accuracy assessments for RS3 indicate different accuracy 

rankings; however, this is reasonable given the similarity in accuracy reported for the Ground and Combo SfM 

models. Results of the rock-slope TS point accuracy assessment indicate higher accuracies when compared to the 

surface-to-surface assessment, which is a result of the significantly smaller sample size of differencing 

measurements used. The TS points accuracy evaluation validated the systematic accuracy of the TLS data, 

confirming TLS data is an appropriate choice for assessing the accuracy of SfM data. Additionally, The TS point 

accuracy assessment revealed relatively balanced proportions of TLS data located behind and in front of the TS 
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points, whereas, the SfM models were found to have variable proportions lying behind and in front of the TS 

reference points. 

The Combo SfM models, which include both UAS and ground-based imagery, provide accuracies comparable 

to ground-based SfM while maintaining the completeness achieved with UAS image acquisition. Using both UAS 

and ground-based imagery for a SfM reconstruction exploits both the improved access afforded by a UAS and the 

resolution achieved from a ground-based handheld camera. 

 

Quality Evaluation 

Point Density. All SfM point clouds were found to have a more uniform point density when compared to TLS 

datasets, which is beneficial (visually, computationally, and accuracy-wise) in developing surface models with more 

consistent mesh elements and more uniform vertices for interpolation. Point density hotspots (Fig. 4) are a common 

occurrence in TLS point cloud data because scanning occurs at fixed angular increments, resulting in increased point 

spacing with distance for a given angular increment. Portions of the scanned environment that are close to a given 

scan position will have a significantly higher point density. Additionally, surfaces that are orthogonal to the laser 

pulse direction have a higher point density relative to surfaces that are oblique. 

 

Completeness. The Combo and UAS SfM surface models are the most complete and Ground SfM models are the 

least complete, despite the fact that the Ground SfM models also have the greatest number of total points. This result 

is attributed to the resolution and GSD of the handheld imagery used to generate the Ground SfM reconstructions. 

Even though the Combo SfM models utilized more imagery and are more complete, they include fewer points due to 

the incorporation of lower resolution UAS-based imagery with a larger GSD. 

 

Surficial Parameters. The localized increase in surface slope values of ~40° observed for RS1 (Fig. 6) represents 

regions of the rock-slope captured well with UAS and poorly captured with TLS and ground-based SfM. The 

majority of RS1 has a slope of ~60 to 80°; however, localized benches within the rock-slope are laid back at a 

shallower slope of between 40 and 45°. These localized benches proved difficult to capture with ground-based 

methods but were captured well with the advantageous point of view afforded by the UAS. Given the smaller 
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vertical extent of RS2 and RS3, the majority of the slope was visible to both aerial and terrestrial capture methods. 

As such, we observe very similar distributions of surface slope among the SfM and TLS datasets. 

The evaluation of SW and LW roughness reveals evidence for the over-smoothing of the UAS and Combo SfM 

data observed during the qualitative visual inspection. Across all three study sites, we observe a bias of UAS and 

Combo SfM data towards lower roughness values when compared to TLS, which is likely a result of the lower 

resolution, higher GSD images contributed by the UAS. The distributions for SW and LW roughness for the Ground 

SfM datasets correlate well with the TLS distributions; however, as previously discussed, the Ground SfM models 

are deficient with respect to completeness. In general, the roughness distributions for the SfM surface models are 

found to align best with the TLS distribution in the right (upper) half of the distribution. This suggests that SfM is 

better suited for capturing surfaces with higher roughness as opposed to smoother surfaces. 

 

Rock-Slope Morphology Classification. The discrepancies in RAI classification observed for RS1 are attributed to 

the large vertical extent of the rock-slope combined with the UAS imagery acquisition strategy. Results of the 

accuracy and roughness evaluations for RS1, support the unconservative RAI classification discrepancies observed 

for RS1. The use of a consumer-grade UAS (DJI Phantom 3 Professional) combined with flight limitations 

associated with the active roadway resulted in the acquisition of imagery of insufficient resolution and GSD. RAI 

classification of RS1 could be improved by using a higher resolution camera and/or gaining approval to fly closer to 

the rock-slope. Fewer discrepancies in RAI classification were observed for RS2 and RS3 because of their relatively 

smaller vertical extents. For RS2 and RS3, the ground-based imagery acquired with a handheld camera captured a 

majority of the slope, providing the detail necessary to assist the UAS imagery during SfM reconstruction. 

 

Conclusion 

Based on results of the accuracy assessment, SfM photogrammetry used in this study is not as accurate as TLS, 

but is an appropriate tool for rock-slope assessment, assuming the images are tied to a rigorous survey control 

network by way of GCPs. Use of a survey control network enables accurate scaling and geo-referencing of the 

resulting 3D point cloud data. While, the equipment needed to perform SfM (e.g., digital camera, UAS) is around 

two orders of magnitude less expensive than TLS, it is important to consider the significant cost of survey 



82 

equipment needed to establish appropriate control. Also, the additional time required to setup the control network is 

often neglected when SfM acquisition times are discussed.   

It is also imperative that an appropriate quantity of images be acquired with adequate overlap – a difficult task 

to judge in the field when utilizing manual image acquisition methods, as was done in this study. UAS imagery was 

not acquired using an automated flight plan due to the lack of a flight planning solution that is compatible with 

vertical features (e.g., a rock-slope) and can be trusted in an obstacle rich environment. 

It is undeniable that UAS-based SfM techniques offer superior color imagery and accessibility when compared 

to traditional TLS techniques. While a key benefit of TLS is its ability to penetrate through gaps in vegetation while 

the SfM cannot directly penetrate, the flexibility in positioning the UAS from different vantage points can result in 

improved ground coverage in some vegetation cover.   

The Combo SfM models were found to benefit from the improved completeness and accuracy of the UAS and 

Ground SfM models, respectively. Ground-based imagery also served to capture imagery under rock outcrop 

overhangs where the UAS used for this study was unable to view. The inability of the UAS to see under overhangs 

is attributed to the placement of the camera under the body of the aircraft – this effect could be mitigated by using a 

UAS with a front mounted camera that can rotate to achieve an unobstructed view above the horizontal plane. It may 

also be possible to omit acquisition of ground-based imagery if a digital image sensor of increased size and 

resolution is used on the UAS and/or the UAS can fly closer to the rock-slope. For example, the handheld camera 

used for this study has an image sensor which is approximately twice the size and resolution of the sensor used in 

the UAS camera. If the handheld camera was mounted on the UAS, and the UAS was able to maintain a GSD 

similar to that achieved by ground-based image acquisition, the UAS-based imagery likely would result in a SfM 

reconstruction of similar accuracy and quality to that of the Ground SfM models. 

With regard to monitoring rock-slopes using SfM techniques, caution must be exercised when performing 

change detection with SfM-derived point clouds and surface models. Artifacts, such as over-smoothing and 

geometric inconsistencies stemming from differences in image acquisition (e.g., lighting conditions and overlap) 

have potential to introduce error into detection of small changes. The inherent variability in SfM-derived geometry 

is demonstrated by the results of the TS point accuracy assessment. For the SfM-derived surface models, the 

accuracy and proportions of positive and negative discrepancies were found to be quite variable when compared to 

the consistent TLS results (Table 3). Useful studies have evaluated the performance of SfM with regards to change 
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detection (Lato et al., 2015b; James et al., 2017b); however, further work is needed to improve the threshold of 

change that can consistently be detected on rock-slopes with SfM techniques. 

The accuracies presented in this paper serve as an example of what can be achieved with SfM techniques when 

following sound surveying methods. Given the variety of environments where these techniques can be employed, as 

well as, the plethora of available tools/instruments, it is likely that better or worse results could be achieved. The 

situation is further complicated by the difference in factors that contribute to uncertainty for TLS and SfM 

techniques. For TLS and total stations, factors such as range, incidence angle, and internal calibration play a major 

role in the propagation of uncertainty. For SfM, uncertainty is introduced through errors in the determination of 

exterior and interior orientation of the exposure stations, lens distortion, lighting conditions, and uncertainty in the 

automated process of keypoint matching, to name a few. Devising a real-world experiment that accounts for all the 

possible interactions amongst these factors is improbable. Evaluation of SfM experiments performed with simulated 

imagery of virtual, computer-generated environments provides an opportunity to further our understanding of how 

these factors may influence SfM point cloud quality and accuracy (Slocum and Parrish, 2017).  
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	Executive Summary 
	 The Office of Management and Budget’s Circular A-11 directed federal agencies—including transportation agencies—to consider climate preparedness and resilience as part of their FY 2017 construction and maintenance budget requests. The effects of a changing climate on transportation corridor slopes are poorly understood, but several recent studies (e.g., Hicks, 1995; Occhiena and Pirrulli, 2012) suggest that landslide activity, especially rockfall, is likely to increase as a consequence of the increased occ
	 In order to understand slope rockfall activity and its linkages to weather and climate, we acquired additional high-resolution lidar surveys of rock slopes in Alaska.  This Pacific Northwest Transportation Consortium (PacTrans)-supported research successively developed a rich data set to quantitatively evaluate rockfall activity (the magnitude-frequency of rockfall events), which proved useful for examining correlations with historic weather patterns and future climate forecasts.  As part of this research,
	 This quantitative approach for rockfall activity forecasting is an important step in providing tools to state departments of transportation to assess transportation corridor risks, sustainability, and resiliency, especially for Alaska in the face of a changing climate.  This research is a first step in providing the analysis tools needed to meet a recent presidential directive and help improve our fundamental understanding of the potential impacts of climate change on the safety of and mobility within tran
	 
	 
	 
	Chapter 1 Climate Change and Transportation Resiliency 
	Interest in transportation infrastructure in the Arctic region is growing because of increased maintenance costs that can be linked to climate change.  Alaska is seeing increased ground subsidence and slope instability at twice the rate of the mid-latitudes (National Climate Assessment, 2016).  Because much of Alaska’s transportation infrastructure is developed on permafrost, the region’s deeper thaws and other extreme weather events are likely to incur significant costs for mitigation and repair.   
	As an example, the impacts of landslides, thaw-induced subsidence, and rockfalls on infrastructure have cost $11 million/year for Alaska (Connor and Harper, 2013), $10 million for Oregon (Burns and Madin, 2009), and $15 million/year for Washington (Washington DNR, 2016), sometimes resulting in hundreds of millions of dollars of losses during extreme events (e.g., the Oso, Washington, landslide of 2014). 
	The U.S. National Climate Assessment indicates that risks to Alaska infrastructure could be substantially greater (Larson et al., 2008), with costs reaching $5.6 to $7.6 billion by 2080 for all forms of transportation infrastructure (figure 1.1).  
	A recent report from the National Academies of Science (2016) conclusively demonstrated that climate change has led to an increase in the frequency and intensity of daily temperature extremes and has contributed to a widespread intensification of daily precipitation extremes (Scott, 2016).  Precipitation extremes and longer-term climate change trends are forcing departments of transportation (DOTs) to anticipate asset management issues by assessing vulnerability and risk to assets.  This includes identifyin
	 
	Figure
	Figure 1.1 Thawing Alaska, from US National Climate Assessment:  Estimating future costs for Alaska public infrastructure at risk from climate change. Page 132. (Larsen et al., 2008).   
	 
	These aspects of transportation planning are collectively known as “resilience and adaptation” and are now part of the DOT vocabulary.  Adaptation is not necessarily new, as there have always been challenges of unstable soils, rockfall, flooding, and extreme heat.  What are new are the increased frequency and intensity of these events and their increasing economic impacts.  Adequate planning and response are needed to ensure the resilience of communities that are dependent on critical transportation network
	The geography, demographics, and development history of Alaska have led to limited transportation corridors without any network redundancy.  This means that the state’s transportation network is vulnerable to disruption. The state also has limited capacity to adapt to events such as rock falls, landslides, and damage to culverts and bridges from storm events. 
	Since 2012, we have been acquiring high-resolution lidar surveys of close to 20 rock-slopes in Alaska in support of Pactrans-supported studies of roadway safety and geotechnical 
	asset management. The setting for this research is fortuitous, since Alaska is regarded a climate change field laboratory by experts who have found that the region is already experiencing the early effects of a rapidly changing climate (Larsen et al., 2008). In this project, we capitalized on this treasure trove of unique, high-resolution data to quantify how rockfall activity (i.e., the magnitude-frequency of rockfall events) varied with changes in annual storm intensity and other meteorological and climat
	This research is a first step in providing the analysis tools needed to meet a presidential directive and also to help improve our fundamental understanding of the potential impacts of climate change on the safety of transportation networks in landslide-prone regions. It directly aligns with the 2016 PacTrans theme of "Safe Infrastructure: High tech solutions to lifeline resilience." Specifically, it addresses PacTrans' research priority of using new data-driven technologies to improve the safety and resili
	 
	  
	 
	 
	  
	Chapter 2 Assessing Rockfall in the Face of Climate Change 
	Assessing rockfall and landslide risk poses challenges when DOT’s decide where to allocate funds, especially from a system-wide asset management perspective with limited DOT budgets.  Slope assessment has traditionally been laborious and costly. Current best practices for management do not necessarily facilitate proactive methods for slope data collection, analysis, and management to identify and remediate hazardous conditions before a failure occurs.  
	Another factor limiting slope assessment has been inadequate data and observation systems. This is especially true for Alaska, primarily because of its vast and austere environment.  Without baseline data and monitoring systems, analysis of the changing factors that affect transportation infrastructure is unfeasible.  To overcome this limited understanding, PacTrans and its cost-share partners agreed to begin a baseline laser-scan survey at two critical locations in Alaska deemed most likely to face rockfal
	2.1 Rockfall Activity Index  
	Subsequent scans using terrestrial laser scan technology in 2013 (Phase II), 2014 (Phase II), 2015 (Phase III), and 2017 (this project phase) have now created a rich data set that can be used to develop a more precise and quantifiable geohazard risk assessment.  To quantify rockfall activity and assess landslide risk, the PacTrans research team developed the Rockfall Activity Index (RAI) (Dunham et al., 2017).  The RAI is a point cloud-derived, high-resolution, morphology-based method for assessing rockfall
	procedure. In the first step, morphological indices (local slope and roughness derived from a high-resolution, three-dimensional point cloud) are used as an indicator to classify erosion and mass wasting processes acting on rock slopes. In the second step, the slope morphology classifications are used with estimated instability rates to map rockfall activity across a slope face. The RAI method has been implemented as a simple and computationally efficient algorithm, which makes it repeatable and easy to app
	The method provides an estimate of rockfall kinetic energy release (this is the numerical Rockfall Activity Index, RAI) along 1-m rock slope segments, as well as detailed mapping of rock slope morphology and kinetic energy release areas. The RAI does not consider large, structurally controlled failures such as rock slides or topples, which are typically assessed with limit equilibrium analysis procedures. The RAI is expressed as annual cumulative delivery of rockfall kinetic energy (kJ) at the base of a uni
	2.2 Rockfall Activity Index in the Face of Climate Change  
	To further the development of the RAI, this round of the PacTrans research had the following objectives:   
	 Acquire an additional dataset from a 2017 campaign for further analysis and to create a longer time series data set for climate change trend analysis. 
	 Acquire an additional dataset from a 2017 campaign for further analysis and to create a longer time series data set for climate change trend analysis. 
	 Acquire an additional dataset from a 2017 campaign for further analysis and to create a longer time series data set for climate change trend analysis. 

	 Compare data from the digital surface models to corroborate rockfall trends. 
	 Compare data from the digital surface models to corroborate rockfall trends. 

	 Compare rockfall trends with historic weather to validate climatic forecast trends.  
	 Compare rockfall trends with historic weather to validate climatic forecast trends.  


	We then examined correlations between the quantifiable Rockfall Activity trends with the historic weather patterns of the study sites.  Forecasted climatic trends for the rest of the 21st century were also examined. 
	 
	  
	 
	 
	 
	  
	Chapter 3 Review of Phases I to III of the PacTrans Research 
	PacTrans is an organization that sponsors university transportation research in the Pacific Northwest.  Located at the University of Washington, its partner institutions include universities in Alaska, Oregon, and Idaho. Phases I to IV (the current phase) of this research were led by the University of Alaska Fairbanks, with co-investigators from Oregon State University and the University of Washington. Note that each phase was a separate project with unique research goals, but each effectively built upon th
	During the first phase, two critical transportation corridors in Alaska (figure 3.1) were selected for the research; they are colloquially known as Glitter Gulch and Long Lake.  The Long Lake corridor is approximately half way between Anchorage and Glennallen on the Glenn Highway (mileposts 78 to 89).  Glitter Gulch is located on the Parks Highway (mileposts 239 and 247), about halfway between Anchorage and Fairbanks.  Glitter Gulch is immediately north of the tourist village at the entrance to the Denali P
	 
	Figure
	Figure 3.1 Locations of rockfall study sites in Alaska 
	3.1 Phase I Research Results 
	Phase I research had the objective of evaluating the capabilities of lidar data to assess slope hazards and risk in a geotechnical asset management framework and developing tools to use them.  The research was conducted from fall 2012 to fall 2013.  Using both mobile and static terrestrial lidar, it created a baseline of laser scanning measurements for 10 miles of highway at the Long Lake and Glitter Gulch sites with problematic slopes.  Data from the laser scans were used to create detailed morphological m
	 
	 
	Figure
	Figure 3.2 Lidar point cloud of the Glitter Gulch study site on the cover of TR News (Link at:  
	Figure 3.2 Lidar point cloud of the Glitter Gulch study site on the cover of TR News (Link at:  
	http://onlinepubs.trb.org/onlinepubs/trnews/trnews295.pdf
	http://onlinepubs.trb.org/onlinepubs/trnews/trnews295.pdf

	) 

	Three limitations to the mobile lidar scanning techniques were revealed, primarily involving insufficient scan detail (resolution) from the currently available technology when the lidar is traveling at highway speeds, vegetation interfering with scan data, and the blocking (occlusion) of laser scans by shadows cast by barriers, guard rails, and vegetation. However, the benefits identified included efficient coverage across large sections of highway, safe data collection, and the ability of the data to be ut
	The final report for the Phase I of the project (Metzger et al., 2012) is available at: 
	The final report for the Phase I of the project (Metzger et al., 2012) is available at: 
	http://depts.washington.edu/pactrans/wp-content/uploads/2012/12/PacTrans-2-739439-Metzger-Andrew-Multi-Project.pdf
	http://depts.washington.edu/pactrans/wp-content/uploads/2012/12/PacTrans-2-739439-Metzger-Andrew-Multi-Project.pdf

	 

	3.2 Phase II Research Results 
	A scientific shortcoming determined in Phase I was that existing rockfall hazard assessment models were inadequate for the detailed lidar digital elevation model (DEM) data because they were too coarse.  Both the Rockfall Hazard Rating System (RHRS) (Pierson, 1991 and Huang et al., 2009) and the Rockslope Deterioration Assessment (RDA) (Nicolson, 2004) are subjective, resulting in qualitative descriptions and risk assessments. A quantitative risk model exists called the Probabilistic Risk Assessment (PRA) (
	The Phase I research also indicated that research into slope stability risk analysis could benefit from additional lidar scan data from another timeframe at a similar resolution, in order to perform slope change analysis. (The mobile laser scan data were difficult to compare with the 
	static scan data, given the differences in resolution.) The field survey during this phase focused on a narrower set of specific sites rather than attempting to capture data for the long sections of highway, as done in the first phase.   
	Change detection can identify specific locations of individual rockfall activity, talus accumulation, minute volumetric changes of the slope, overall volumetric change, and overall trends in morphology.  Examples are provided in figures 3.3 and 3.4.  This temporal analysis could then be further developed with more data to examine more complex phenomena, such as geologic fracturing, insolation on south facing slopes, freeze-thaw cycles, soil ratcheting, and the mitigation effects resulting from regular DOT s
	 
	 
	Figure
	Figure 3.3 DEM change detection – red rock loss and blue rock accretion 
	 
	 
	Figure
	Figure 3.4 Close-up of eroded material at the talus (red < -0.25m) at Glitter Gulch 
	 
	Cantilever overhangs and other complex features created scanning occlusions in the DEM, thus helping to focus the team’s investigation on scientific solutions to scanning occlusions. Important research into how to help interpolate across the occluded scan data led to the publication of the paper titled, “To Fill or Not to Fill:  Sensitivity Analysis of the Influence of Resolution and Hole Filling on Point Cloud Surface Modeling and Individual Rockfall Event Detection.” (Olsen et al., 2015). This paper also 
	The ability to measure changes in slope surfaces and quantify them with precise detail led the team to an enhanced analysis of slope stability and the impacts of rock structure and weathering.  By tracking morphology, it is also possible to quantify slope roughness across multiple scales.  Changes in morphology and roughness can be precisely calculated to infer changes in slope volumetrics and the kinetic energy released with the slope change.  These 
	components became part of the Rockfall Activity Index (RAI) developed to model slope dynamics.  
	The scientific methods and RAI were published in scholarly articles and in the PacTrans Phase II report. These links are at:   
	 The PacTrans Phase II Report (Cunningham et al., 2013):  
	 The PacTrans Phase II Report (Cunningham et al., 2013):  
	 The PacTrans Phase II Report (Cunningham et al., 2013):  
	 The PacTrans Phase II Report (Cunningham et al., 2013):  
	http://depts.washington.edu/pactrans/wp-content/uploads/2013/11/PacTrans_42-UAF-Cunningham.pdf
	http://depts.washington.edu/pactrans/wp-content/uploads/2013/11/PacTrans_42-UAF-Cunningham.pdf

	 


	 Rockfall Activity Index in Engineering Geology (Dunham et al., 2017):  
	 Rockfall Activity Index in Engineering Geology (Dunham et al., 2017):  
	 Rockfall Activity Index in Engineering Geology (Dunham et al., 2017):  
	http://www.sciencedirect.com/science/article/pii/S0013795216305671
	http://www.sciencedirect.com/science/article/pii/S0013795216305671

	 



	3.3 Phase III Research Results 
	PacTrans sponsored the team’s Phase III research with a new project to evaluate the quality of additional photogrammetric data collected via a drone (unmanned aircraft system or UAS) in addition to a third set of repeat terrestrial laser scans. The additional data also helped the team develop a quantifiable rockfall and slope stability model utilizing change detection techniques to forecast future slope behavior.  This research effort also provided an opportunity to further test and refine the RAI system to
	Two important outcomes resulted from this phase.  First was a detailed examination of the photogrammetry data captured by an off-the-shelf drone, which indicated that the resulting photogrammetry surface models were comparable to the lidar scans in many ways and of reasonable accuracy for slope morphology assessment, provided that adequate survey control was provided.   
	The photogrammetry process, called structure-from-motion (SfM), uses the motion parallax of the drone’s changing position to generate detailed three-dimensional models of the 
	slope surfaces.  While the SfM technique is not necessarily new, its application to terrain modeling is new, especially with the perspective that an airborne platform can achieve over-terrestrial imaging.  The drone demonstrated that its “aloft” perspective generates DSM data of critical cantilever overhangs.  Additionally, the point cloud density of the SfM model is comparable to that of the lidar scanner but was also found to be more consistent.  Finally, unlike the lidar, which could only be operated fro
	Rigorous comparison of the drone SfM data to terrestrial laser scan (TLS) data required rigorous survey control.  Geodetic Global Navigation Satellite System (GNSS) receivers and total stations with targets serving as ground control points (GCP) placed on the slope were therefore necessary for both the drone photogrammetry and the lidar scanning.   
	The last step in the photogrammetry research was to fuse the drone DEM with the lidar DEM.  The results were effective, with the drone data filling occlusions in the lidar data, and the lidar data helping to “control” the draping of the drone DSM point cloud.  Thus a denser and more complete DEM was generated for the Phase III data collection without the problematic occlusions from the rock cantilever overhangs. 
	Project results were highlighted as a success story in the Pactrans Newsletter (figure 3.5).  The project report for this phase will be forthcoming on the Pactrans website. 
	 
	Figure
	Figure 3.5 PacTrans Success Story.  (Link at:  
	Figure 3.5 PacTrans Success Story.  (Link at:  
	http://depts.washington.edu/pactrans/wp-content/uploads/2016/03/PacTrans-Fall-2015-Edition-14-Newsletter-Final.pdf
	http://depts.washington.edu/pactrans/wp-content/uploads/2016/03/PacTrans-Fall-2015-Edition-14-Newsletter-Final.pdf

	) 

	  
	Chapter 4 Current Phase (IV) Research Results 
	This Phase IV project had several primary goals.  First was the collection of another round of rockslope data at the Glitter Gulch and Long Lake sites.  A second goal was to conclude an in-depth analysis of the accuracy of the digital surface model (DSM) with terrestrial laser scan (TLS) data and structure-from-motion (SfM) data with survey control (expanding on Phase III).  Third, the time series data were evaluated for changes in magnitude frequency curves. Fourth, an RAI forecasting model was developed t
	4.1 Step 1:  Data Collection 
	 The survey campaign was conducted in late summer of 2017.  This included both a drone SfM (figure 4.1) and TLS (figure 4.2), with rigorous survey controls utilizing total station (Leica TS15, figure 4.3), GNSS (Leica GS14, figure 4.4), and survey targets for ground control points (GCP).  New TLS equipment (Leica P40) was used for data collection, improving the data quality as well as providing denser, three-dimensional point clouds in a similar amount of time.  In particular, the system had less noisy data
	 
	 
	Figure
	Figure 4.1 Example drone operation with the flight controller (right) and the image acquisition software (left) 
	 
	 
	Figure
	Figure 4.2 Example terrestrial laser scan set-up with the Leica P40 at a Glitter Gulch site. 
	 
	Figure
	Figure 4.3 Example operation of the total station at a Glitter Gulch site to acquire reflectorless measurements on the cliff face.   
	 
	Figure
	Figure 4.4 Example GNSS survey observation on a ground control point used to provide geo-referencing information for the total station. 
	 
	 
	 
	 
	 
	Figure
	(a) 
	 
	Figure
	(b) 
	 
	Figure
	(c) 
	Figure 4.5 (a) Overview of RGB colored terrestrial laser scans for Site LL85.5 with detailed close-ups (b and c). 
	 
	 
	 
	 
	 
	 
	Figure
	(a) Slope 
	 
	Figure
	(b) Roughness (35cm) 
	 
	Figure
	(c) Roughness (85 cm) 
	 
	Figure
	(d) Kinetic energy (kJ) 
	 
	 
	 
	 
	 
	 
	Figure
	(e) RAI classification 
	 
	Figure 4.6 Example calculations for Site LL85.5, including (a) Slope, (b) Roughness 35 cm, (c) roughness 85 cm, (d) Kinetic energy potential, and (e) Rockfall Activity Index 
	 
	4.2 Step 2:  Lidar SfM Comparison 
	 The accuracy assessment comparing the TLS with the SfM data was rigorously conducted at three rock slopes at the Long Lake study site with variable morphologies and geometries.  These are indicated by markers labeled RS1 (RockSlope 1), RS2, and RS3 in figure 4.7.  While preliminary evaluations were conducted in Phase III, this phase enabled us to complete a much more in-depth analysis of the capabilities and limitations of the UAS-based SfM.   
	  
	 
	Figure
	Figure 4.7 Study plan with three rockslopes selected:  RS1, RS2, and RS3. 
	 
	Figure 4.8
	Figure 4.8
	Figure 4.8

	 shows the colorized digital surface model (DSM) for each rock slope (RS1, RS2, and RS3), with black and white pattern targets used as ground control points (GCPs).  The GCPs were used to survey the DSM with a total station linked to the geodetic network via GNSS receiver. The GCPs were also used to register the SfM data on top of the TLS data. 

	Further details and findings of this comparison are available in the manuscript (O’Banion et al., in press) provided in Appendix A, which was a product of this research project. Key findings included the following:  
	(1) UAS SfM models require significant survey control to provide results of significant accuracy for slope morphology assessment.  
	(1) UAS SfM models require significant survey control to provide results of significant accuracy for slope morphology assessment.  
	(1) UAS SfM models require significant survey control to provide results of significant accuracy for slope morphology assessment.  

	(2) The inclusion of ground-based photographs to supplement the UAS photographs significantly helps improve the models.  
	(2) The inclusion of ground-based photographs to supplement the UAS photographs significantly helps improve the models.  


	(3) SfM models offer some benefits in more consistent resolution and improved coverage across the slope. 
	(3) SfM models offer some benefits in more consistent resolution and improved coverage across the slope. 
	(3) SfM models offer some benefits in more consistent resolution and improved coverage across the slope. 

	(4) A challenge with UAS using SfM models for tall rock slopes is the difficulty of placing survey control on the upper section of the slope, leading to error propagation.  For the SfM data collected in this phase, we remediated these effects by using a total station to sight indistinct features on the cliff and obtain reflectorless measurements to improve the model quality.  (Note this approach had not yet been implemented for the comparison discussed in Appendix A.)   
	(4) A challenge with UAS using SfM models for tall rock slopes is the difficulty of placing survey control on the upper section of the slope, leading to error propagation.  For the SfM data collected in this phase, we remediated these effects by using a total station to sight indistinct features on the cliff and obtain reflectorless measurements to improve the model quality.  (Note this approach had not yet been implemented for the comparison discussed in Appendix A.)   


	 
	 
	Figure
	Figure 4.8 SfM-derived 5-cm surface models of the three rock slopes (RS1, RS2, and RS3) with the layout of black and white targets used as ground control points 
	4.3 Step 3:  Development of Magnitude Frequency Curves 
	 Change detection-derived magnitude–frequency relationships were developed for the Long Lake and Glitter Gulch rock slope study sites. These study sites provided an ideal test-bed setting for developing magnitude–frequency relationships because of their high rates of rockfall activity. Over 20 individual sites were evaluated in the study; however, for brevity, magnitude–frequency relationships are presented for four of the Long Lake sites (corresponding to approximate milepost locations 71, 88.5, 86.9, and 
	 
	 
	 
	Figure
	 Figure 4.9 Cumulative magnitude–frequency relationships for three approximately 1-year epochs at site LL85.5 
	 
	 
	Figure
	Figure 4.10 Cumulative magnitude–frequency relationships for three approximately 1-year epochs at site LL86.9 
	 
	 
	 
	Figure
	Figure 4.11 Cumulative magnitude–frequency relationships for three approximately 1-year epochs at site LL87 
	 
	Figure
	Figure 4.12 Cumulative magnitude–frequency relationships for three approximately 1-year epochs at LL71 
	 
	4.4 Step 4:  Development of a Rockfall Evolution Model 
	 To capture the temporal influence of changing rockslope geometry and various forcing events—climactic, seismic or anthropogenic—a prototypical framework that captures the evolution of rockslopes over time was developed using the same logic as the RAI. This 
	algorithm, entitled the Rockslope Evolution Framework (REF), incorporates RAI classifications (steep overhangs, talus, etc.) for a given digital terrain model (DTM) discretized as a psuedogrid, assigning a prescribed activity rate (A) and retreat rate (R) to each cell on the basis of its classification at a given time increment t. At time t, each given cell is assigned a random number between 0 and 1 that is representative of the Activity Variable (At). When the Activity Variable falls below a prescribed ac
	   
	 
	 
	  
	Figure
	Figure 4.13 Proposed algorithm for implementing the RAI to determine rockfall activity, considering changes in rockslope geometry and activity rates. 
	  The REF was tested on the highly active and well-characterized rockslope located at milepost 88.1 near Long Lake over a 100-year period. For this analysis, the analyzed timestep was 1 year (consistent with the intervals for data collection used to develop the RAI). Every year, the activity rates (A) for the seven classifications (Dw, Dc, Df, I, Oc, Os and T) were assumed to increase at a rate 0.3 percent per year, consistent with increases in average temperatures projected by the Scenarios Network for Ala
	 
	Figure
	Figure 4.14 Top: Projected evolution of the RAI profile for Long Lake MP 88.1 site over a 100-year period, considering increasing climate influences on established activity rates (blue is current time, red is 100 years from now).  Bottom: Mean projected RAI profile for Long Lake MP 88.1 over a 100-year period. Note that the increasing rockfall activity is not linear.  
	  
	 The 100-year projections from the REF exhibit significant retreat at areas with already high activity and retreat rates (i.e., steep and cantilevered overhangs, figure 4.15 and figure 4.16). Intuitively, these are reasonable findings, as these regions tend to be very exposed and prone to instability due to gravity.  Although the given analysis provided profiles after 100 years of rockfall activity (figure 4.16), it is evident that much longer times may result in an eventual transition back to an equilibrat
	  
	 
	  
	Figure
	 
	Figure
	Figure 4.15 Top: Original psuedogrid of RGB 5cm x 5cm cells representative of Long Lake rockslope geometry at the time of data collection.  Bottom: Projected retreat of rockslope after 100 years (red is greater than 2 meters of retreat, blue is no retreat). 
	  
	  
	 
	Figure
	 
	Figure
	Figure 4.16 Select initial and projected final rockslope profiles along Long Lake site after 100 years of time. Note the rapid retreat of steeper and overhanging sections of weak rock, while a more steady retreat pattern is noted for the more gentle grades. 
	 
	The proposed REF model uses the RAI methodology to project rockslope changes on the basis of empirically derived activity and retreat rates derived from serial collection of lidar data. This quantification provides a meaningful approach for providing a more resilient infrastructure network. However, the RAI alone does not account for one of the growing threats toward resilience: climate change. Being able to capture the influence of climactic drivers on rockslope 
	instability quantitatively will enable planners and engineers to prioritize rockfall mitigation measures on the basis of collected empirical data and projected influences. This wil ensure greater resilience today and in the future.  
	 Future modifications will focus on the influence of how these temperatures change freeze/thaw cycling and corresponding activity rates, as the number of freezing and thawing cycles may be used as a proxy for increases in activity for a given year based on climate projections.  This work may also account for other climate-forcing influences, including solar radiation (aspect), precipitation, and snow. 
	4.5 Step 5:  Comparison of Slope Change with Historic Weather Patterns  
	 To analyze the historic weather and forecasted climate of the study sites, we first downloaded the historic weather data archived with the National Oceanic and Atmospheric Administration (NOAA).  These data for central Alaska dated from 1927, offering 90 years of records to examine.  Annual trends resembled weather in many places—a whipsaw of ranges. Nevertheless, the overall trend could be determined.  Since 1927, the trend of summer temperatures, as indicated in figure 4.17, has been one of continuous wa
	 
	 
	Figure
	Figure 4.17 Summer temperature warming trend for central Alaska since 1927 
	 
	Note the horizontal gray line, which is the mean temperature for the entire period of weather observations.  The blue line indicates the trend of summer temperatures for July, which depicts a steady increase.  During this period, temperatures climbed from an average summer temperature of 55°F to an average of 58°F.  The historic data also show that yearly swings in temperature variability skewed with the warming trend.   
	The same data can be viewed on a differing plot, figure 4.18. In this case, we combined the average summer temperatures for central Alaska, not just for July as in the previous plot, but also for the months of June, July, and August. The warming trend remained the same. 
	 
	 
	Figure
	Figure 4.18 Summer temperature warming trend for central Alaska since 1927 
	 
	There are two additional ways of looking at the temperature trends for central Alaska.  The previous two charts provided the average temperatures.  When we considered the minimum (figure 4.19) and maximum (figure 4.20) temperatures from June through August, the patterns again remained similar, though the average maximum temperature shifted earlier in the chart. 
	 
	Figure
	Figure 4.19 Temperature warming trend for central Alaska since 1927 (minimums) 
	 
	 
	Figure
	Figure 4.20 Temperature warming trend for central Alaska since 1927 (maximums) 
	 
	 
	Finally, looking at the historic average temperatures in what is typically the coldest month for central Alaska, February (figure 4.21), the same trend emerged, with a warming trend of about 6°F from 1927 to the present.   
	 
	Figure
	Figure 4.21 Winter temperature warming trend for central Alaska since 1927 
	 
	The reader is invited to further study these trends at this NOAA link: 
	The reader is invited to further study these trends at this NOAA link: 
	https://www.ncdc.noaa.gov/cag/time-series/us/50/3
	https://www.ncdc.noaa.gov/cag/time-series/us/50/3

	 

	 
	 
	  
	 
	   
	Chapter 5 Alaska Forecast Models 
	5.1 Weather Patterns and Climate Forecasts 
	Climatologists generally refer to weather as the temperature, humidity, and precipitation of a place, typically on a short time scale, such as hour to hour, day to day, and week to week.  Climate on the other hand is the weather of a place averaged over a longer time, such as year to year, or over decades.  Thus the historic weather data we reviewed provided insight into the changing climate pattern for our study sites. 
	Climate researchers have noted that Alaska has warmed twice as rapidly as the rest of the U.S.  This warming effect is greater in the winter by an average of 6°F, whereas the summers are warmer by 3°F (Chapter 4).  Weather variability, with more extremely hot days and fewer extremely cold days, is now the normal pattern affecting transportation corridors in Alaska.  The spring snowmelt arrives earlier, glaciers are retreating, and permafrost is thawing longer and deeper during the summers.   
	A significant warming shift occurred around 1977, when the Pacific Decadal Oscillation (PDO) was observed.  The PDO has been shown to alternate over time between cool and warm phases, although the cooler oscillation has been moderated by the long-term warming trend.  The PDO is explained by the coupling of warming atmosphere and waters in the eastern Pacific Ocean and is related to El Niño events, among other factors.  The oscillations from the PDO pattern can be seen in the previous charts. 
	The long-term climate patterns in Alaska continue to show a warming trend.  Forecast models include variables that are mechanisms that “force” certain patterns.  These “forcings” include greenhouse gases, with the greatest influence being carbon dioxide because of its prevalence and link to fossil fuels. 
	5.2 Climate Forecast Models 
	The forecast models used to predict monthly average temperatures at our study sites were developed at the University of Alaska Fairbanks by the Scenarios Network for Alaska + Arctic Planning (SNAP).  These SNAP models were used to factor a variety of forcings into local, down-scaled forecasts for the specific sites of Long Lake (Chickaloon projection) and Glitter Gulch (Denali Park projection).   
	The forecast models borrow from models developed by global experts that have been tested for factors associated with Alaska’s historic weather patterns.  The various models and the scenarios under which they are evaluated lead to differing projections.  In the case of the forecasts at our study sites, the greatest variable chosen was that carbon emissions would continue to be released at their current rate. 
	This current rate of emission is called the “high-range emission,” which in effect means that carbon dioxide trends will result in solar energy warming of the Earth’s surface at +8.5 watts per square meter.  The term RCP 8.5 means representative carbon pathway, which is another forecasting tool specific to several greenhouse gases, not exclusively carbon dioxide forcing. 
	With the RCP 8.5 assumption, the model showed that average annual temperatures in Alaska are projected to climb steadily for the balance of the 21st century. By 2050 temperatures are expected to grow by an additional 2°F to 4°F above the historic increase from 1927 to 2017.  By the end of this century, temperatures in the interior of Alaska are expected to rise 8°F to 10°F. 
	5.3 Climate Forecasts for Study Sites 
	The next series of plots are from the SNAP models.  The first two charts are temperature projections and variabilities at Chickaloon (Long Lake, figure 5.1 and Denali Park (Glitter 
	Gulch, figure 5.2). Note that the historic data are in the first two bars (gray and light orange), whereas the longer-range forecasts are displayed the darker orange colors.  Superimposed on each bar is the variability of the projection (from the normal statistical distribution), which provides an estimate of how the daily temperatures (weather) may vary within the overall climatic pattern. 
	 
	 
	Figure
	Figure 5.1 Temperature forecast at Long Lake through 2099 
	 
	 
	 
	Figure
	Figure 5.2 Temperature forecast at Glitter Gulch through 2099 
	 
	The same forecasting models were also used to estimate the precipitation at each study site.  The following two charts (figures 5.3 and 5.4) for the study sites show increasing precipitation and a profoundly varying range of precipitation events, which are correlated to climate change, in general. 
	 
	Figure
	Figure 5.3 Precipitation forecast at Long Lake through 2099 
	 
	Figure
	Figure 5.4 Temperature forecast at Glitter Gulch through 2099 
	 
	  
	Chapter 6 Conclusions and Recommendations 
	This Phase IV research project attempted to understand the quantitative slope changes the team has measured since 2012 at Long Lake and Glitter Gulch, Alaska, with historic weather data and forecasted climate trends. A quantitative framework called the RAI provided a reliable way to assess rockfall activity and the impacts of these geohazards using a serial collection of rockfall data. The RAI is versatile tool that enables users to collect rockfall activity and prioritize mitigation measures within a data-
	To capture the influence of climate change on rockfall activity, the progressive failures observed in rockslopes must be quantified and projected by using a rational, data-driven engineering approach. The change in rock slope morphology at the study sites showed continuous rockfall, talus accumulation, and overall progressive mass wasting.  It is understood that rockfall events may be tied to freeze/thaw cycling and heavy precipitation, suggesting that the influence of a changing climate is important to fut
	to develop mitigation budgets.  Thus, a data-driven approach based on the collected data is paramount to the safety and resilience of critical transportation corridors today and in the future.    
	On the basis of the collected serial data and the Rockfall Activity Index (RAI) approach, a framework for assessing projected rockslope activity based on changes in time-dependent classification and DTM evolution was developed, entitled the Rockslope Evolution Framework (REF). This prototype was used to project the potential impacts of a changing climate, in this case using temperature increase as a proxy for increasing rockfall activity. The results showed that the yearly RAI for a given site may increase 
	There is a lot of uncertainty in predicting climate change that far into the future given that policies, technology, habits, lifestyles, and priorities will all continue to evolve.  Nevertheless, a longer-term perspective and monitoring campaign could create more definitive connections between the individual weather events that are part of climate change and the dynamics of rockfall and slope stability. Each perspective is important to further risk assessment, and mitigation planning with forecasting models
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	Suitability of structure from motion for rock-slope assessment 
	O’Banion, M.S., Olsen, M.J., Rault, C., Wartman, J., and Cunningham, K. 
	Abstract 
	This study examines three sites with unstable rock-slopes that were surveyed in Alaska using both TLS and SfM techniques. The datasets were acquired simultaneously and linked to a rigorous survey control network. An accuracy evaluation of the SfM-derived surface models was performed using TLS data and numerous reflectorless total station observations collected across the rock-slopes. A quality evaluation was conducted to examine differences in point density, model completeness, and distributions of morpholo
	 
	Keywords: rock-slopes, structure from motion (SfM), accuracy assessment, lidar, terrestrial laser scanning (TLS), unmanned aircraft systems (UAS) 
	 
	Introduction 
	Terrestrial laser scanning (TLS), also known as terrestrial or ground-based lidar, has proven to be a valuable, reliable technique for the assessment and monitoring of unstable slopes; however, even with numerous setups, portions of a slope or cliff may not be visible from areas accessible to the scanner, resulting in the inability to capture important features of the slope morphology. In lieu of TLS, unmanned aircraft systems (UAS) and a 
	handheld camera may gather overlapping digital imagery to generate similar three-dimensional (3D) point clouds by way of Structure from Motion (SfM) and multi-view stereo (MVS) photogrammetric techniques (hereafter collectively referred to as SfM).  Use of UAS can provide superior accessibility to cliffs and the acquisition of cliff geometry compared to TLS methods. 
	This study examines three unstable road cuts along the Glenn Highway in Alaska, U.S.A. with different morphologies to evaluate the suitability of SfM for rock-slope assessment. SfM suitability is judged relative to TLS methods with regards to absolute accuracy (i.e., including geo-referencing error) and quality of the 3D data. While previous studies have attempted to assess the accuracy of SfM-based image reconstructions (e.g., Harwin and Lucieer, 2012; James and Robson, 2012; Eltner et al., 2016; Westoby e
	This paper presents an evaluation of the suitability of SfM for rock-slope assessment.  Accuracy is analyzed through a comparison with two high-accuracy, high precision independent references, tied to a rigorous survey control network. In addition, a quality assessment of SfM data relative to TLS examines important factors such as point density, surface model completeness, and surface morphology. These additional quality metrics have not been 
	thoroughly or formally evaluated in prior work, which has focused primarily on geometric accuracy. In the context of the accuracy and quality evaluations, comparisons were performed between ground and UAS-based SfM models, as well as, combination SfM (Combo SfM) models in which both ground and UAS-imagery was utilized.  
	 
	Background 
	Road cuts through rocky terrain often result in steep rock-slopes, which can be susceptible to rockfall – a process involving detachment, fall, rolling, and bouncing of rocks (Hungr et al., 2014). Rockfall is a reoccurring hazard along transportation corridors in mountainous regions throughout North America. Tens of millions of dollars ($US) are spent annually on rock-slope maintenance and mitigation (Turner and Jayaprakash, 2013). 
	Current methods for characterization of rockfall hazards and risk rely on rock mass classification (e.g., Pantelidis, 2009) or rockfall hazard rating systems (e.g., Pierson, 2013) that depend on manual visual inspection and simplified calculations. These methods are both qualitative in nature (Budetta and Nappi, 2013) and coarse in spatial resolution. TLS allows for systematic acquisition of rock-slope 3D geometry at high, cm-scale spatial resolutions (Jaboyedoff et al., 2012; Abellán et al., 2014). TLS has
	TLS offers advantages in terms of accuracy, repeatability, and reliability; however, challenges exist such as cost and the common occurrence of occlusions. SfM-based image reconstruction has the potential to solve these challenges (Fonstad et al., 2013; Chandler and Buckley, 2016). Acquisition of imagery for SfM reconstruction using a UAS offers further advantages in terms of terrain accessibility (e.g., Lato et al., 2015). UAS imagery acquisition and subsequent SfM model reconstruction have proven useful f
	masses and slides in Nepal after the 2015 earthquake event. Lastly, Manousakis et al. (2016) utilized UAS SfM for rockfall hazard analysis. SfM-based digital outcrop acquisition has been successfully performed by various studies (e.g., James and Robson, 2012; Bemis et al., 2014; Lato et al., 2015a; Wilkinson et al., 2016). However, results of a comparison with co-acquired TLS data from Wilkinson et al. (2016) indicates that the precision of SfM data can deteriorate near the outcrop edges and over-smoothing 
	Eltner et al. (2016) present an extensive review of SfM accuracies reported by 39 different published geoscientific studies. The following factors introduce error into SfM-based 3D reconstructions: the scale of the object/environment being captured, the distance of the camera from the imaged object(s), camera calibration, image network geometry, image-matching performance, surface texture and lighting conditions, and GCP characteristics (Eltner et al., 2016). In terms of accuracy of SfM, Eltner et al. (2016
	 
	Study Area 
	The study area is located approximately 110 km northeast of Anchorage, Alaska, U.S.A. along the Glenn Highway (Fig. 1). The region is primarily comprised of sedimentary rocks of the Matanuska and Chickaloon Formations. The Matanuska Formation is a marine sedimentary deposit formed during the orogenic rise of the 
	Talkeetna Mountains. The Chickaloon Formation was deposited as propagating alluvial fans on top of the Matanuska Formation that formed as the Talkeetna Mountains were uplifted and sequentially eroded (Belowich, 2006). The highway follows the glacial cut into the Chickaloon Formation; however, no other glacial evidence may be found in the area (Trop et al., 2015). Regions of the Matanuska Formation exposed in road cuts along the Glenn Highway largely consist of dark mudstones while Chickaloon Formation outcr
	 
	 
	Figure
	Fig. 1. Study area location plan. Three independent sites were selected: RS1, RS2, and RS3. Basemap imagery was provided by ESRI ArcGIS Online. 
	 
	Three independent sites were selected for this study (Fig. 2). Rock-Slope 1 (RS1, milepost 71) is a nearly vertical (70° to 90°) road cut approximately 50 to 60 m high and 140 m wide. RS1 is composed of well-indurated dark mudstone of the Matanuska Formation. Rock-Slope 2 (RS2, milepost 85.5) is a 60° road cut approximately 8-10 m high and 40 m wide. RS2 consists of highly fractured, fine to medium-grained, moderately weathered grey and tan hard sandstone of the Chickaloon Formation. The fractures are orien
	hard, well-indurated mafic basalt sills. Numerous cantilever overhangs exist on RS3 because of localized erosion of the soft siltstone beneath the sills. 
	 
	 
	Figure
	Fig. 2. SfM-derived 5 cm surface models of the three rock slopes (RS1, RS2, and RS3) with the layout of black & white targets used as ground control points (GCP). 
	 
	Methodology 
	Data Collection 
	Survey Control. A survey control network was developed for each study site to ensure proper scaling of the SfM reconstructions and for geo-referencing of both the SfM and TLS data. The control network consisted of Static and Rapid Static (RS), Global Navigation Satellite System (GNSS) occupations, and paper-based black & white targets, which served as GCPs. Two types of paper-based GCPs were used, generic black & white targets, commonly used in TLS survey workflows, and PhotoScan branded targets which can b
	software (Agisoft, 2017). The layout of GCPs for each rock-slope site is presented in Fig. 2. Sites RS1 and RS3 have GCPs that are not located on the selected rock-slope surface. These GCPs were used during development of the SfM models; however, they do not lie within the clipped region of the rock-slope. Components of the survey control network were tied together using a Leica TS15 (1”) total station instrument. Two total station positions were used to establish the control network for both RS1 and RS3. A
	Two types of RS observations were collected: RS control points positioned along the highway and marked with a magnetic survey nail, and scan position occupations acquired using a scanner mounted GNSS receiver. A survey-grade GNSS receiver (Leica GS14) was set up over an established control point and served as a base station to post-process short (< 15 min) RS GNSS observations using relative positioning techniques.  
	RS control points were incorporated into the survey control network using a TS instrument, prism rod, and 360° prism. The center point of all black & white paper target placed within a scanned/imaged scene was acquired by the TS in reflectorless mode.  
	The TS was also used to acquire reflectorless points scattered across the rock-slope faces. The purpose of these points is twofold, first to serve as an independent reference for evaluating the accuracy of the TLS-derived surface models and second, to evaluate the accuracy of SfM models in portions of the rock-slope unoccupied by GCPs. The rock-slope TS points are not to be confused with the survey control network; they were simply acquired with the TS instrument during the development of the control networ
	 
	TLS Survey. TLS surveys were performed using a Riegl VZ-400 laser scanner following a stop-and-go scanning approach similar to that presented in (Olsen et al., 2009; Olsen et al., 2015) for efficient mobilization of equipment along the shoulder lane of the highway. The TLS configuration included a calibrated, digital SLR (Nikon D700) camera and survey-grade Leica GS14 GNSS receiver mounted on top with known calibrated offsets. Precise inclination sensors (±0.008°, 1-
	TLS Survey. TLS surveys were performed using a Riegl VZ-400 laser scanner following a stop-and-go scanning approach similar to that presented in (Olsen et al., 2009; Olsen et al., 2015) for efficient mobilization of equipment along the shoulder lane of the highway. The TLS configuration included a calibrated, digital SLR (Nikon D700) camera and survey-grade Leica GS14 GNSS receiver mounted on top with known calibrated offsets. Precise inclination sensors (±0.008°, 1-
	Span
	) integrated into the TLS instrument (Silvia and Olsen, 2012) enable the scans to be 

	accurately leveled despite the unlevel wagon platform. Electronic Distance Measurement (EDM) scaling corrections were applied for atmospheric conditions, including temperature, pressure, and relative humidity. All scans had a field-of-view of 360° horizontally and +60° to -40° vertically relative to the horizontal plane. Scans were acquired from the shoulder opposite of the rock-slope at 40-60 m intervals (adapting to features of interest on the cliff) with an angular resolution of between 0.02 and 0.05°. 
	Prior to collection of TLS scans at each site, black and white pattern targets mounted to rigid clipboards were placed throughout the anticipated scanned scene. 
	 
	UAS Imagery. Aerial photographs were obtained using a DJI Phantom 3 Professional quadcopter UAS platform. The Phantom 3 weighs 1.3 kg (including camera payload), is approximately 40-cm-wide, and has a flight endurance of about 20 minutes. The UAS platform includes an integrated 3-axis gimbal system to stabilize the camera during flight, thus minimizing vibration-induced blur in the aerial images. The gimbal provides a pitch range of -90° (i.e., nadir) to +30°, which can be adjusted in-flight using DJI's mob
	slope was 11 m, 10 m, and 14 m for RS1, RS2, and RS3, respectfully. The UAS aerial photography required about 40 minutes to complete at each site, including time for at least one landing and re-launch sequence for battery replacement. 
	 
	Terrestrial Imagery. Terrestrial photographs were acquired using a Sony Cyber-shot DSC-RX10 II digital camera with a 24-200 mm (35-mm equivalent) f/2.8 lens and 13.2 mm by 8.8 mm sensor, resulting in images with an effective resolution of 20.2 megapixels (5496 x 3672). Before the fieldwork in Alaska, we performed trial photography campaigns at a benchmarked outdoor test site to determine the optimal camera settings for the SfM acquisition. In our test trials, we obtained the most accurate results when the c
	 
	Data Processing 
	Control network processing. The GNSS base station coordinates were established using the Static processing available through the National Geodetic Survey’s Online Positioning User Service (OPUS-S). RS GNSS control points were processed against the base station using baseline vector processing in Leica Geo Office v.8.3 (Leica Geosystems, 2012). These coordinates were also obtained using rapid-static processing available through the National Geodetic Survey’s Online Positioning User Service (OPUS-RS) for vali
	For each site, a 3D, constrained, least squares adjustment of the control network was completed using StarNet 8.0 to produce the final coordinates and uncertainties for the control targets and reflectorless measurements on the 
	rock-slope surfaces. The following observations were input for the adjustment: GNSS control point coordinates and associated uncertainties obtained from OPUS (peak-to-peak error) and OPUS-RS (standard deviations), GNSS baseline vectors between the base station and rover positions with associated covariance matrices, and the measured distances, horizontal angles, vertical angles, and uncertainties for the total station measurements for each setup.  The GNSS baseline vector uncertainties were scaled by a fact
	 
	TLS Processing. Post-processing of TLS data is required to merge individual scans into a cohesive point cloud. This process requires adjustment of the position and orientation of a given scan location, resulting in a rigid-body transformation of the 3D point cloud acquired from that location. Information derived from the onboard inclination sensors, the top-mounted GNSS receiver and the relative position of GCP targets captured in the scan enable the determination of transformation parameters, including rot
	Prior to performing local registration of the point cloud data, individual scans were leveled in accordance with values reported by the onboard inclination sensors. Local registration and geo-referencing of the TLS data was performed in Leica Cyclone v.9.1 software (Leica Geosystems, 2015) using target matches and cloud-to-cloud surface matching constraints. The co-registered point clouds were subsequently geo-referenced using both the adjusted survey control network and the scan position coordinates derive
	Quality control of point cloud registrations included a review of misalignment error vectors for target constraints, a review of total error associated with cloud-to-cloud constraints, and visual inspection of registered point clouds, including cross-section inspection. Visual inspections of the registered point clouds were performed to identify the presence of any point cloud misalignment artifacts that would require re-registration. 
	 
	SfM Processing. Image-based 3D reconstruction was performed using Agisoft PhotoScan Professional v.1.3.4 (Agisoft, 2017). Three models were developed for each study site: Ground (solely ground-based imagery), UAS (only the UAS imagery), and Combo (ground and UAS imagery). Prior to importing the digital images into 
	PhotoScan, the UAS-based images (DNG format) were processed using the DJI DNG Cleaner software and both the cleaned DNG and RAW images were converted to JPEG using the Adobe Lightroom software. 
	The “Align Photos” tool was used for initial camera alignment and subsequent development of a sparse 3D point cloud with the following settings: Accuracy = High, Generic preselection, Key point limit = 45,000, and Tie point limit = 4,000. Following the creation of the sparse point cloud, GCP coordinates derived from the survey control network for each site were imported. The “Detect Markers” tool was used to automatically extract the centers of any PhotoScan branded targets. The centers of additional non-Ph
	 
	Surface Generation. Finalized SfM and TLS point clouds were cropped to identical extents, including only portions of a given rock-slope to be studied. Coarse vegetation removal was performed by manually selecting and deleting regions of vegetation in the point cloud. Efforts were made to be consistent when performing manual vegetation removal; however, in many cases, vegetation in a given area appeared differently in the SfM and TLS datasets. For example, a dense shrub observed as a surficial shell of point
	 
	Accuracy Assessment 
	Two independent references (both tied to the aforementioned control network) are available for assessing the accuracy of the SfM models: the TLS-derived surface models, and the rock-slope TS points. In this case, the TLS surface models are preferred over the rock-slope TS points because they offer many more nodes/vertices for 3D differencing. When comparing two surface models of similar extent, all nodes that comprise a surface mesh can be compared to those of the reference surface. The quantity of rock-slo
	from 50 to 100 discrete points, which is far fewer than the 1 x 105 to 2 x 106 nodes made available by the surface models.  
	Prior to assessing the accuracy of the SfM-derived surface models, the accuracy of the TLS-derived models was evaluated using the rock-slope TS points. This important step validates the TLS surface models as an appropriate reference for assessing the accuracy of the SfM models. They also serve as an additional reference for assessing the accuracy of the SfM models. 
	Surface-to-surface (comparing TLS and SfM surfaces) and surface-to-point (comparing a surface to the rock-slope TS points) assessments were completed using the “Color from Distance” tool in Maptek I-Site Studio 6.0 software (Maptek, 2016). A maximum distance threshold of + 0.20 m was chosen as not to include larger discrepancies associated with the presence of inconsistent vegetation removal. The reported distances represent 3D discrepancies measured along the surface normal of the base surface to the close
	 
	Quality Evaluation 
	The SfM quality evaluation focuses on the suitability of SfM for the assessment of rock-slopes. Multiple characteristics including point density, completeness, and the capabilities of SfM to capture surface morphology (e.g., slope and roughness) were evaluated relative to TLS.  
	Point density was determined by sub-sampling the TLS and SfM point clouds into 5 x 5 cm grid cells and recording the number of points within each cell. The completeness metric was determined based on relative values of model surface area at each site. A baseline surface area representing full completeness was established for each site based on the Combo SFM point cloud with surface data gaps (holes) filled. Small holes in the 3D surface models were filled using the thin plate spline technique presented in (
	the occurrence of data gaps. Completeness values were determined by comparing the surface area of a model with no hole filling to the site-specific baseline surface area representative of a complete model (Eq. 1). 
	𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠=(𝑆𝑢𝑟𝑓.  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡 𝐻𝑜𝑙𝑒𝑠 𝐹𝑖𝑙𝑙𝑒𝑑𝑆𝑢𝑟𝑓.  𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑜𝑚𝑏𝑜 𝑆𝑓𝑀 𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝐻𝑜𝑙𝑒𝑠 𝐹𝑖𝑙𝑙𝑒𝑑)×100 (1) 
	Comparative distribution plots were developed to present the differences in surface morphology captured by TLS and SfM methods. The chosen surface parameters include slope, surface roughness, and the Rockfall Activity Index (RAI). RAI is a point-cloud-derived, morphology-based classification methodology used to evaluate rockfall hazards (Dunham et al., 2017). Two types of surface roughness (standard deviation of slope) were examined:  small window (SW) roughness, which is computed using a 35 x 35 cm window;
	Lastly, a visual qualitative inspection of the TLS and SfM derived point clouds was performed. Both TLS and SfM point clouds were added to the same 3D visualization for direct visual comparison allowing for detailed inspection of geometric discrepancies between the TLS and SfM datasets. 
	Results 
	SfM and TLS point cloud data attributes (Table 1) include the type of point cloud, the number of images used for SfM reconstruction or the number of scans for TLS data, the quantity of GCP targets used for registration, the total amount of points in the point cloud on the rock-slope surface, and the mean point density for each dataset. 
	 
	Table I. Details of the SfM and TLS point clouds. 
	Table
	TBody
	TR
	Span
	Site 
	Site 

	Approx. Slope Surface Area (m²) 
	Approx. Slope Surface Area (m²) 

	Type 
	Type 

	Number of Images/Scans 
	Number of Images/Scans 

	Number of GCPs 
	Number of GCPs 

	Total Points 
	Total Points 

	Mean Point Density (pts/m²) 
	Mean Point Density (pts/m²) 


	TR
	Span
	RS1 
	RS1 

	9,300 
	9,300 

	Ground SfM 
	Ground SfM 

	140 
	140 

	29 
	29 

	43,441,327 
	43,441,327 

	6,151 
	6,151 


	TR
	UAS SfM 
	UAS SfM 

	132 
	132 

	25 
	25 

	19,807,042 
	19,807,042 

	2,804 
	2,804 


	TR
	Combo SfM 
	Combo SfM 

	272 
	272 

	29 
	29 

	39,411,287 
	39,411,287 

	5,579 
	5,579 


	TR
	TLS 
	TLS 

	6 
	6 

	29 
	29 

	55,681,383 
	55,681,383 

	7,875 
	7,875 


	TR
	Span
	RS2 
	RS2 

	450 
	450 

	Ground SfM 
	Ground SfM 

	124 
	124 

	8 
	8 

	43,839,216 
	43,839,216 

	122,830 
	122,830 


	TR
	UAS SfM 
	UAS SfM 

	30 
	30 

	5 
	5 

	4,420,183 
	4,420,183 

	12,378 
	12,378 


	TR
	Combo SfM 
	Combo SfM 

	154 
	154 

	7 
	7 

	31,091,288 
	31,091,288 

	86,751 
	86,751 


	TR
	TLS 
	TLS 

	3 
	3 

	10 
	10 

	12,095,566 
	12,095,566 

	33,871 
	33,871 


	TR
	Span
	RS3 
	RS3 

	1,680 
	1,680 

	Ground SfM 
	Ground SfM 

	164 
	164 

	29 
	29 

	81,738,569 
	81,738,569 

	63,585 
	63,585 


	TR
	UAS SfM 
	UAS SfM 

	61 
	61 

	25 
	25 

	11,571,375 
	11,571,375 

	9,001 
	9,001 


	TR
	Combo SfM 
	Combo SfM 

	225 
	225 

	29 
	29 

	63,474,055 
	63,474,055 

	49,361 
	49,361 


	TR
	Span
	TLS 
	TLS 

	5 
	5 

	30 
	30 

	27,881,655 
	27,881,655 

	21,684 
	21,684 




	The number of images and TLS scans, and GCPs used for RS1 and RS3 are very similar; however, their approximate surface areas are quite different (further discussed in Discussion section). Site RS2 required fewer images, TLS scans, and GCPs due to its relatively smaller horizontal extent. For RS1, the TLS point cloud has the largest number of points, followed by the Ground SfM, Combo SfM, and UAS SfM point clouds, listed in order of decreasing point count. The point count for RS2 and RS3 indicate a different
	Accuracy Assessment 
	Rock-slope surface maps depicting the spatial distribution of geometric discrepancies identified between the SfM and TLS surface models were developed for each of the study sites (Fig. 3). The minimal discrepancy between the SfM and TLS surface models is represented by regions colored in green. Regions colored in shades of blue represent where the SfM surface is located in front of the TLS surface, and shades of red represent where the SfM surface is located behind the TLS surface model. Regions of the rock
	Similar error patterns are observed for the various SfM surface models depicted in Fig. 3. The Ground and Combo SfM surface models demonstrate close alignment with the TLS surfaces; while, the UAS SfM surfaces result in a distinct error pattern, which includes a discontinuity across the rock-slope face where discrepancies with the TLS surface transition from positive to negative. Statistics, including the mean, standard deviation, RMSE, and 95% confidence error of the 3D discrepancies of the surface-to-surf
	Results of the surface-to-surface comparison between SfM and TLS models indicate 3D errors at 95% confidence ranging from +0.044 m to +0.048 m for Ground SfM models, +0.048 m to +0.112 m for UAS SfM models, and from +0.041 m to +0.048 m for Combo SfM models. Likewise, the results of the surface-to-points comparison between TLS and SfM surface models and the rock-slope TS points are presented in Table 3. Comparison of the TLS surface models to the TS points indicates a consistent surface model accuracy of +0
	 
	Figure
	Fig. 3. Geometric discrepancies for RS3 identified by differencing TLS and SfM surface models. 
	 
	Table II. Statistics regarding 3D discrepancies between SfM and TLS-derived 5 cm resolution 3D surfaces. 
	Table
	TBody
	TR
	Span
	SfM  Model 
	SfM  Model 

	Type 
	Type 

	Mean Diff.  (m) 
	Mean Diff.  (m) 

	σ (m) 
	σ (m) 

	RMSE (m) 
	RMSE (m) 

	Error  95% Conf. (m) 
	Error  95% Conf. (m) 

	% of SfM in Front of TLS 
	% of SfM in Front of TLS 


	TR
	Span
	RS1 
	RS1 

	Ground SfM 
	Ground SfM 

	-0.003 
	-0.003 

	+ 0.029 
	+ 0.029 

	+ 0.029 
	+ 0.029 

	+ 0.047 
	+ 0.047 

	55.4 
	55.4 


	TR
	UAS SfM 
	UAS SfM 

	-0.051 
	-0.051 

	+ 0.046 
	+ 0.046 

	+ 0.069 
	+ 0.069 

	+ 0.112 
	+ 0.112 

	94.1 
	94.1 


	TR
	Combo SfM 
	Combo SfM 

	-0.006 
	-0.006 

	+ 0.029 
	+ 0.029 

	+ 0.030 
	+ 0.030 

	+ 0.048 
	+ 0.048 

	60.5 
	60.5 


	TR
	Span
	RS2 
	RS2 

	Ground SfM 
	Ground SfM 

	-0.002 
	-0.002 

	+ 0.027 
	+ 0.027 

	+ 0.027 
	+ 0.027 

	+ 0.044 
	+ 0.044 

	58.3 
	58.3 


	TR
	UAS SfM 
	UAS SfM 

	-0.010 
	-0.010 

	+ 0.028 
	+ 0.028 

	+ 0.030 
	+ 0.030 

	+ 0.048 
	+ 0.048 

	65.3 
	65.3 


	TR
	Combo SfM 
	Combo SfM 

	-0.010 
	-0.010 

	+ 0.023 
	+ 0.023 

	+ 0.025 
	+ 0.025 

	+ 0.041 
	+ 0.041 

	72.9 
	72.9 


	TR
	Span
	RS3 
	RS3 

	Ground SfM 
	Ground SfM 

	0.000 
	0.000 

	+ 0.030 
	+ 0.030 

	+ 0.030 
	+ 0.030 

	+ 0.048 
	+ 0.048 

	56.9 
	56.9 


	TR
	UAS SfM 
	UAS SfM 

	0.020 
	0.020 

	+ 0.036 
	+ 0.036 

	+ 0.041 
	+ 0.041 

	+ 0.066 
	+ 0.066 

	23.0 
	23.0 


	TR
	Span
	Combo SfM 
	Combo SfM 

	0.003 
	0.003 

	+ 0.026 
	+ 0.026 

	+ 0.027 
	+ 0.027 

	+ 0.043 
	+ 0.043 

	43.8 
	43.8 




	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table III. Statistics regarding 3D geometric discrepancies between SfM and TLS-derived 5 cm resolution 3D surfaces and the Rock-Slope TS points. 
	 
	Table
	TBody
	TR
	Span
	Site 
	Site 

	Type 
	Type 

	Mean Diff. (m) 
	Mean Diff. (m) 

	σ (m) 
	σ (m) 

	RMSE (m) 
	RMSE (m) 

	Error  95% Conf. (m) 
	Error  95% Conf. (m) 

	% of Surface in Front of TS Points 
	% of Surface in Front of TS Points 


	TR
	Span
	RS1 
	RS1 

	Ground SfM 
	Ground SfM 

	-0.001 
	-0.001 

	+ 0.015 
	+ 0.015 

	+ 0.015 
	+ 0.015 

	+ 0.025 
	+ 0.025 

	57.14 
	57.14 


	TR
	UAS SfM 
	UAS SfM 

	-0.032 
	-0.032 

	+ 0.041 
	+ 0.041 

	+ 0.052 
	+ 0.052 

	+ 0.084 
	+ 0.084 

	82.69 
	82.69 


	TR
	Combo SfM 
	Combo SfM 

	-0.006 
	-0.006 

	+ 0.020 
	+ 0.020 

	+ 0.021 
	+ 0.021 

	+ 0.033 
	+ 0.033 

	56.19 
	56.19 


	TR
	TLS 
	TLS 

	0.002 
	0.002 

	+ 0.009 
	+ 0.009 

	+ 0.010 
	+ 0.010 

	+ 0.015 
	+ 0.015 

	41.90 
	41.90 


	TR
	Span
	RS2 
	RS2 

	Ground SfM 
	Ground SfM 

	0.002 
	0.002 

	+ 0.024 
	+ 0.024 

	+ 0.025 
	+ 0.025 

	+ 0.040 
	+ 0.040 

	48.98 
	48.98 


	TR
	UAS SfM 
	UAS SfM 

	0.006 
	0.006 

	+ 0.029 
	+ 0.029 

	+ 0.029 
	+ 0.029 

	+ 0.047 
	+ 0.047 

	36.73 
	36.73 


	TR
	Combo SfM 
	Combo SfM 

	-0.001 
	-0.001 

	+ 0.024 
	+ 0.024 

	+ 0.024 
	+ 0.024 

	+ 0.039 
	+ 0.039 

	57.14 
	57.14 


	TR
	TLS 
	TLS 

	0.003 
	0.003 

	+ 0.009 
	+ 0.009 

	+ 0.009 
	+ 0.009 

	+ 0.015 
	+ 0.015 

	31.25 
	31.25 


	TR
	Span
	RS3 
	RS3 

	Ground SfM 
	Ground SfM 

	-0.001 
	-0.001 

	+ 0.008 
	+ 0.008 

	+ 0.008 
	+ 0.008 

	+ 0.013 
	+ 0.013 

	63.86 
	63.86 


	TR
	UAS SfM 
	UAS SfM 

	0.013 
	0.013 

	+ 0.025 
	+ 0.025 

	+ 0.028 
	+ 0.028 

	+ 0.046 
	+ 0.046 

	22.89 
	22.89 


	TR
	Combo SfM 
	Combo SfM 

	-0.001 
	-0.001 

	+ 0.011 
	+ 0.011 

	+ 0.011 
	+ 0.011 

	+ 0.017 
	+ 0.017 

	53.01 
	53.01 


	TR
	Span
	TLS 
	TLS 

	0.001 
	0.001 

	+ 0.009 
	+ 0.009 

	+ 0.009 
	+ 0.009 

	+ 0.014 
	+ 0.014 

	55.42 
	55.42 




	 
	 
	Quality Evaluation 
	Point Density. Point density heat maps were developed for each of the three study sites (Fig. 4). The rock-slope point density maps demonstrate both the varying magnitude and spatial distribution of point density throughout the different SfM and TLS point cloud datasets. A smaller point density range was applied to the color ramp for RS2 to account for the lower point densities identified for RS2. The Ground SfM surface models for RS2 and RS3 are saturated with red due to their high point density relative t
	Similar trends in point densities are observed for sites RS2 and RS3. Study site RS1 demonstrates unique results with regards to the relative distributions of point density. For RS1, the TLS point cloud has the highest mean point density and standard deviation. The ranking of the remaining SfM datasets is Ground SfM, Combo SfM, and UAS SfM, listed in order of decreasing mean point density. The point density evaluation for RS2 and RS3 reveals a ranking for mean point density that differs from that observed f
	All point density distributions computed for the Ground SfM model have a noticeable increase in low point density values. This increase is attributed to the relatively large quantity of zero values added to the Ground SfM datasets to account for data gaps that contribute to the lower completeness percentage of these data. Zero values were added to all SfM and TLS datasets to account for data gaps; however, changes to the distributions were negligible given the high completeness percentage of all but the Gro
	 
	Figure
	Fig. 4. Point density heat maps for RS3 SfM and TLS-derived 3D point cloud data. 
	 
	 
	Figure
	Fig. 5. Comparative distribution plots of point density for SfM and TLS datasets. 
	 
	Completeness. Completeness of the surface models range from 89.4% to 99.5% for RS1, 96.9 % to 99.8% for RS2, and 94.4% to 99.5% for RS3. For all three study sites, the Ground SfM models result in the least complete surface model, and the UAS or the Combo SfM models are the most complete. Paradoxically, the Ground SfM models contained the largest number of points. 
	 
	Surficial Parameters. Comparative distribution plots were developed to present the differences in surface morphology captured by TLS and SfM methods. Surface parameters evaluated for this study include slope, SW 
	surface roughness, and LW surface roughness (Figs. 6-8). All distribution plots were normalized to account for differences in completeness amongst the surface models. 
	Overall, the normalized distributions of slope for the surface models at each site are very similar. The results for RS1 indicate the distributions of slope for the Combo and UAS SfM models differ from the distributions of slope for the Ground SfM and TLS models. The Combo and UAS SfM datasets have a localized increase in slope values at around 40° that is not observed in the others. 
	With regard to mean of SW roughness, the UAS SfM model is most similar to the TLS data for RS1, and the Ground SfM model is most similar to the TLS data for Sites RS2 and RS3. When examining standard deviation of SW roughness, the Combo SfM model is most similar to the TLS data for Sites RS1 and RS3, and the Ground SfM model is most similar to TLS for RS2 (Fig. 7). 
	 
	 
	Figure
	Fig. 6. Comparative distributions for surface slope. 
	 
	 
	Figure
	Fig. 7. Comparative distributions for small window (35x35 cm) roughness 
	 
	 
	Figure
	Fig. 8. Comparative distributions for large window (85x85 cm) roughness 
	For Site RS1, there is a clear separation in the distributions of SW roughness between the SfM and TLS datasets and the distributions for the Combo and UAS SfM models are very similar (Fig. 7). The TLS distribution of SW roughness for RS1 is significantly different from the SfM datasets, indicated by an average mean shift of + 3.4°. For Sites RS2 and RS3, the distributions of SW roughness for the Ground SfM data are slightly shifted toward a higher roughness when compared to the other SfM datasets. Results 
	In general, the results of the LW surface roughness evaluation are similar to those reported for the SW surface roughness with a few subtle differences. In terms of the mean of LW roughness, the UAS SfM model is most similar to the TLS data for RS1, the Combo SfM model is most similar to the TLS data for RS2, and the Ground SfM is most similar for RS3. When examining standard deviation of LW roughness, the Combo SfM model is most similar to the TLS data for Sites RS1 and RS2, and the Ground SfM model is mos
	For Sites RS2 and RS3, the distributions of LW roughness for the Ground and SfM data are slightly shifted toward a higher roughness when compared to the other SfM datasets. Results for RS2 indicate similar distributions of LW roughness for the Combo SfM and TLS datasets; however, the Combo SfM distribution has an increase in frequency at LW roughness values of ~15° with respect to the TLS distribution, and the Ground SfM model becomes more aligned with the TLS distribution for LW roughness values > ~25°. Fo
	 
	Rock-Slope Morphology Classification. The RAI classification evaluation is presented as comparative histogram plots in Fig. 9. A significant over-prediction of intact rock (I) occurs for RS1 followed by an under-prediction of the fragmented (Df), closely spaced (Dc), and widely to moderately spaced (Dw) discontinuous rock units, as well as steep (Os) and cantilever (Oc) overhangs when compared to the TLS surface. The distribution of RAI classifications for RS2 is similar amongst the SfM and TLS surface mode
	over-prediction of I and under-prediction of Dc for RS3; however, the discrepancies are not as large as those observed for RS1. 
	Overall, the RAI classifications for Ground SfM-derived surfaces are most similar to the RAI classifications determined for the TLS surfaces. Example RAI classification maps for RS1 are presented in Fig. 10. The over-prediction of RAI Class I observed in Fig. 9 is depicted in Fig. 10 by the dominance of bright green observed for the SfM surface model. The insets presented in Fig. 10 provide a close-up view of the RAI classifications for each of the surface models. The TLS inset shows the prevalence of Dc an
	 
	Visual inspection. Qualitative inspection of the TLS and SfM point cloud data revealed a prevalence of over-smoothing in the UAS and Combo SfM data. Many of the sharp edges associated with rock outcrop discontinuities, were observed to be more round and smooth when compared side-by-side with the TLS point cloud data. Over-smoothing was not as apparent in the Ground SfM point cloud data. Simultaneous visualization of the TLS and SfM point clouds also revealed the ability of UAS-based SfM to, in some scenario
	 
	 
	 
	Figure
	Fig. 9. Comparative histogram plots for RAI classification. RAI classifications are as follows: Unclassified (U), Talus (T), Intact Rock (I), Fragmented discontinuous rock (Df), Closely spaced discontinuous rock (Dc), Widely to moderately spaced discontinuous rock (Dw), Steep overhang (Os), and Cantilever overhang (Oc). 
	 
	 
	Figure
	Fig. 10. RAI classification for RS1. 
	 
	Discussion 
	For study sites RS2 and RS3, the total number of points for the Ground SfM datasets is about three times that of the TLS point clouds. This is not the case for RS1 where the discrepancy may be attributed to differences in image acquisition that stem from both technique and the relatively large vertical and horizontal extent of RS1. Twenty-four additional images were used to create the Ground SfM point cloud for RS3 when compared to RS1. In retrospect, this amount is inadequate given RS1 is ~30 m longer and 
	The significant difference in TLS total points between sites RS1 and RS3 is attributed to differences is scanning geometry. Given the larger vertical extent and near vertical orientation of RS1, the TLS instrument was placed further away from the slope than for RS3 to ensure capture of the upper reaches. Increasing the distance between the TLS instrument and the area of interest will increase point spacing and decrease the total quantity of points, assuming the scanning resolution is unchanged. 
	Having a greater number of points and higher mean point density for the Ground SfM models when compared to the Combo SfM models is counterintuitive given the additional images used to generate the Combo models. 
	When including more images in an SfM reconstruction, one would expect the point quantity to increase. It is possible that this peculiar behavior stems from some automated optimization routine in PhotoScan that omits images and associated points if other imagery is available for a given region and is thought to be of higher quality. Further investigation is required to validate this possibility.  
	It is worth noting that the Combo SfM models generated for this study used an average of 217 images per site, compared to an average of 5 TLS scans per site. Assuming a reasonable scanning resolution is chosen, acquisition of 5 TLS scans can be performed in approximately the same amount of time as acquiring a total of 217 images gathered with both UAS and ground-based cameras. In addition, the efficiency of TLS acquisition could be further increased by following direct geo-referencing techniques that elimin
	 
	Accuracy Assessment 
	There is good agreement between both the Ground and Combo SfM surface models and the TLS-derived surfaces. Results indicate accuracies (95% confidence) ranging between + 0.044 m and + 0.048 m for Ground SfM, + 0.041 m and + 0.048 m for Combo SfM, and + 0.0748 m and + 0.112 m for UAS SfM model. Discrepancies between the UAS SfM models and the TLS surfaces follow a pattern in which the intersection of the two planes follow a path roughly parallel to the layout of the GCPs placed along the base of the slope. F
	the three study sites; however, the percentage of SfM surface that lies in front of the TLS surface changes. The percentages are more balanced in the case of RS2, with 65.3% in front of the TLS surface. The presence of a clear intersection between the UAS SfM and TLS surfaces that appear to be associated with the layout of the GCPs indicates the lack of localized regions of significant deformation in the SfM surface that would affect the relative accuracy of the model. This differencing pattern is indicativ
	Ground-based SfM can result in high accuracy 3D data; however, it is plagued by numerous occlusions, similar to and often more severe than those seen in TLS data. The TLS outperformed ground-based SfM with respect to completeness even though images were acquired from many more locations/points of view than TLS scan positions (Table 1). This effect is likely attributed to the fundamental difference in passive and active remote sensing techniques employed by digital photography and TLS, respectively. In this 
	Results of the surface-to-surface and surface-to-points (TS points) accuracy assessments reveal a consistent accuracy ranking of the SfM surface models, except for RS3. For RS1 and RS2, the Ground SfM model was identified as the most accurate based on the mean difference between the surface models and the references, followed by the Combo, and UAS SfM models. The accuracy assessments for RS3 indicate different accuracy rankings; however, this is reasonable given the similarity in accuracy reported for the G
	points, whereas, the SfM models were found to have variable proportions lying behind and in front of the TS reference points. 
	The Combo SfM models, which include both UAS and ground-based imagery, provide accuracies comparable to ground-based SfM while maintaining the completeness achieved with UAS image acquisition. Using both UAS and ground-based imagery for a SfM reconstruction exploits both the improved access afforded by a UAS and the resolution achieved from a ground-based handheld camera. 
	 
	Quality Evaluation 
	Point Density. All SfM point clouds were found to have a more uniform point density when compared to TLS datasets, which is beneficial (visually, computationally, and accuracy-wise) in developing surface models with more consistent mesh elements and more uniform vertices for interpolation. Point density hotspots (Fig. 4) are a common occurrence in TLS point cloud data because scanning occurs at fixed angular increments, resulting in increased point spacing with distance for a given angular increment. Portio
	 
	Completeness. The Combo and UAS SfM surface models are the most complete and Ground SfM models are the least complete, despite the fact that the Ground SfM models also have the greatest number of total points. This result is attributed to the resolution and GSD of the handheld imagery used to generate the Ground SfM reconstructions. Even though the Combo SfM models utilized more imagery and are more complete, they include fewer points due to the incorporation of lower resolution UAS-based imagery with a lar
	 
	Surficial Parameters. The localized increase in surface slope values of ~40° observed for RS1 (Fig. 6) represents regions of the rock-slope captured well with UAS and poorly captured with TLS and ground-based SfM. The majority of RS1 has a slope of ~60 to 80°; however, localized benches within the rock-slope are laid back at a shallower slope of between 40 and 45°. These localized benches proved difficult to capture with ground-based methods but were captured well with the advantageous point of view afforde
	vertical extent of RS2 and RS3, the majority of the slope was visible to both aerial and terrestrial capture methods. As such, we observe very similar distributions of surface slope among the SfM and TLS datasets. 
	The evaluation of SW and LW roughness reveals evidence for the over-smoothing of the UAS and Combo SfM data observed during the qualitative visual inspection. Across all three study sites, we observe a bias of UAS and Combo SfM data towards lower roughness values when compared to TLS, which is likely a result of the lower resolution, higher GSD images contributed by the UAS. The distributions for SW and LW roughness for the Ground SfM datasets correlate well with the TLS distributions; however, as previousl
	 
	Rock-Slope Morphology Classification. The discrepancies in RAI classification observed for RS1 are attributed to the large vertical extent of the rock-slope combined with the UAS imagery acquisition strategy. Results of the accuracy and roughness evaluations for RS1, support the unconservative RAI classification discrepancies observed for RS1. The use of a consumer-grade UAS (DJI Phantom 3 Professional) combined with flight limitations associated with the active roadway resulted in the acquisition of imager
	 
	Conclusion 
	Based on results of the accuracy assessment, SfM photogrammetry used in this study is not as accurate as TLS, but is an appropriate tool for rock-slope assessment, assuming the images are tied to a rigorous survey control network by way of GCPs. Use of a survey control network enables accurate scaling and geo-referencing of the resulting 3D point cloud data. While, the equipment needed to perform SfM (e.g., digital camera, UAS) is around two orders of magnitude less expensive than TLS, it is important to co
	equipment needed to establish appropriate control. Also, the additional time required to setup the control network is often neglected when SfM acquisition times are discussed.   
	It is also imperative that an appropriate quantity of images be acquired with adequate overlap – a difficult task to judge in the field when utilizing manual image acquisition methods, as was done in this study. UAS imagery was not acquired using an automated flight plan due to the lack of a flight planning solution that is compatible with vertical features (e.g., a rock-slope) and can be trusted in an obstacle rich environment. 
	It is undeniable that UAS-based SfM techniques offer superior color imagery and accessibility when compared to traditional TLS techniques. While a key benefit of TLS is its ability to penetrate through gaps in vegetation while the SfM cannot directly penetrate, the flexibility in positioning the UAS from different vantage points can result in improved ground coverage in some vegetation cover.   
	The Combo SfM models were found to benefit from the improved completeness and accuracy of the UAS and Ground SfM models, respectively. Ground-based imagery also served to capture imagery under rock outcrop overhangs where the UAS used for this study was unable to view. The inability of the UAS to see under overhangs is attributed to the placement of the camera under the body of the aircraft – this effect could be mitigated by using a UAS with a front mounted camera that can rotate to achieve an unobstructed
	With regard to monitoring rock-slopes using SfM techniques, caution must be exercised when performing change detection with SfM-derived point clouds and surface models. Artifacts, such as over-smoothing and geometric inconsistencies stemming from differences in image acquisition (e.g., lighting conditions and overlap) have potential to introduce error into detection of small changes. The inherent variability in SfM-derived geometry is demonstrated by the results of the TS point accuracy assessment. For the 
	detection (Lato et al., 2015b; James et al., 2017b); however, further work is needed to improve the threshold of change that can consistently be detected on rock-slopes with SfM techniques. 
	The accuracies presented in this paper serve as an example of what can be achieved with SfM techniques when following sound surveying methods. Given the variety of environments where these techniques can be employed, as well as, the plethora of available tools/instruments, it is likely that better or worse results could be achieved. The situation is further complicated by the difference in factors that contribute to uncertainty for TLS and SfM techniques. For TLS and total stations, factors such as range, i
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